Symbolic time-varying root-locus analysis for oscillator design

Yan Zhu, G. Shi, F. Lee, Andy Tai
{"title":"Symbolic time-varying root-locus analysis for oscillator design","authors":"Yan Zhu, G. Shi, F. Lee, Andy Tai","doi":"10.1109/NEWCAS.2012.6328982","DOIUrl":null,"url":null,"abstract":"The small-signal analysis of an oscillator relative to a periodic steady-state (PSS) would generate periodic time-varying characteristic poles. Analyzing periodic root-loci can provide useful design information, which is not available from the existing circuit simulation tools. Although the numerical QZ algorithm can be used to generate periodic root-loci, this paper proposes an alternative symbolic computation method for repeated pole computation. It is demonstrated that the Muller algorithm can be used for finding the dominant periodic roots of a characteristic polynomial with periodic coefficients, whose efficiency is superior to the matrix-based numerical QZ method. Other advantages of symbolic root-locus analysis also are explored by applying the proposed method to the analysis of two oscillator circuits.","PeriodicalId":122918,"journal":{"name":"10th IEEE International NEWCAS Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"10th IEEE International NEWCAS Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEWCAS.2012.6328982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The small-signal analysis of an oscillator relative to a periodic steady-state (PSS) would generate periodic time-varying characteristic poles. Analyzing periodic root-loci can provide useful design information, which is not available from the existing circuit simulation tools. Although the numerical QZ algorithm can be used to generate periodic root-loci, this paper proposes an alternative symbolic computation method for repeated pole computation. It is demonstrated that the Muller algorithm can be used for finding the dominant periodic roots of a characteristic polynomial with periodic coefficients, whose efficiency is superior to the matrix-based numerical QZ method. Other advantages of symbolic root-locus analysis also are explored by applying the proposed method to the analysis of two oscillator circuits.
振荡器设计的符号时变根轨迹分析
相对于周期稳态(PSS)振荡器的小信号分析将产生周期时变特征极点。分析周期根轨迹可以提供有用的设计信息,这是现有电路仿真工具无法提供的。虽然数值QZ算法可以用于生成周期根轨迹,但本文提出了一种替代的符号计算方法用于重复极点计算。结果表明,Muller算法可用于寻找具有周期系数的特征多项式的主周期根,其效率优于基于矩阵的数值QZ方法。通过对两个振荡器电路的分析,探讨了符号根轨迹分析的其他优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信