SparseCCL: Connected Components Labeling and Analysis for sparse images

A. Hennequin, Benjamin Couturier, V. Gligorov, L. Lacassagne
{"title":"SparseCCL: Connected Components Labeling and Analysis for sparse images","authors":"A. Hennequin, Benjamin Couturier, V. Gligorov, L. Lacassagne","doi":"10.1109/DASIP48288.2019.9049184","DOIUrl":null,"url":null,"abstract":"Connected components labeling and analysis for dense images have been extensively studied on a wide range of architectures. Some applications, like particles detectors in High Energy Physics, need to analyse many small and sparse images at high throughput. Because they process all pixels of the image, classic algorithms for dense images are inefficient on sparse data. We address this inefficiency by introducing a new algorithm specifically designed for sparse images. We show that we can further improve this sparse algorithm by specializing it for the data input format, avoiding a decoding step and processing multiple pixels at once. A benchmark on Intel and AMD CPUs shows that the algorithm is from x 1.6 to x 2.5 faster on sparse images.","PeriodicalId":120855,"journal":{"name":"2019 Conference on Design and Architectures for Signal and Image Processing (DASIP)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Conference on Design and Architectures for Signal and Image Processing (DASIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASIP48288.2019.9049184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Connected components labeling and analysis for dense images have been extensively studied on a wide range of architectures. Some applications, like particles detectors in High Energy Physics, need to analyse many small and sparse images at high throughput. Because they process all pixels of the image, classic algorithms for dense images are inefficient on sparse data. We address this inefficiency by introducing a new algorithm specifically designed for sparse images. We show that we can further improve this sparse algorithm by specializing it for the data input format, avoiding a decoding step and processing multiple pixels at once. A benchmark on Intel and AMD CPUs shows that the algorithm is from x 1.6 to x 2.5 faster on sparse images.
SparseCCL:稀疏图像的连通成分标记和分析
密集图像的连通分量标注和分析已经在各种体系结构上得到了广泛的研究。一些应用,如高能物理中的粒子探测器,需要以高吞吐量分析许多小而稀疏的图像。由于它们处理图像的所有像素,因此用于密集图像的经典算法在稀疏数据上是低效的。我们通过引入专门为稀疏图像设计的新算法来解决这种低效率问题。我们表明,我们可以进一步改进这种稀疏算法,将其专门用于数据输入格式,避免解码步骤并一次处理多个像素。在英特尔和AMD cpu上的基准测试表明,该算法在稀疏图像上的速度从1.6到2.5快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信