Multi-Scale Modeling and Simulation Flow for Oscillatory Neural Networks for Edge Computing

S. Carapezzi, Corentin Delacour, G. Boschetto, E. Corti, Madeleine Abernot, A. Nejim, Thierry Gil, S. Karg, A. Todri
{"title":"Multi-Scale Modeling and Simulation Flow for Oscillatory Neural Networks for Edge Computing","authors":"S. Carapezzi, Corentin Delacour, G. Boschetto, E. Corti, Madeleine Abernot, A. Nejim, Thierry Gil, S. Karg, A. Todri","doi":"10.1109/NEWCAS50681.2021.9462761","DOIUrl":null,"url":null,"abstract":"An oscillatory neural network (ONN) is a neuromorphic computing paradigm based on encoding of information into the phases of oscillators. In this paper we present an ONN whose elemental unit, the \"neuron\", is implemented through a beyond-CMOS device based on vanadium dioxide (VO2). Such ONN technology provides ultra-low power solutions for performing pattern recognition tasks, and it is ideally suited for edge computing applications. However, exploring the groundwork of the beyond-CMOS ONN paradigm is mandatory premise for its industry-level exploitation. Such foundation entails the building of a holistic simulation flow from materials and devices to circuits, to allow assessment of ONN performance. In this work we report results of this advanced designing approach with special focus over the VO2 oscillator. This establishes the ground to scale up to evaluate beyond-CMOS ONN functionalities for pattern recognition.","PeriodicalId":373745,"journal":{"name":"2021 19th IEEE International New Circuits and Systems Conference (NEWCAS)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 19th IEEE International New Circuits and Systems Conference (NEWCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEWCAS50681.2021.9462761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

An oscillatory neural network (ONN) is a neuromorphic computing paradigm based on encoding of information into the phases of oscillators. In this paper we present an ONN whose elemental unit, the "neuron", is implemented through a beyond-CMOS device based on vanadium dioxide (VO2). Such ONN technology provides ultra-low power solutions for performing pattern recognition tasks, and it is ideally suited for edge computing applications. However, exploring the groundwork of the beyond-CMOS ONN paradigm is mandatory premise for its industry-level exploitation. Such foundation entails the building of a holistic simulation flow from materials and devices to circuits, to allow assessment of ONN performance. In this work we report results of this advanced designing approach with special focus over the VO2 oscillator. This establishes the ground to scale up to evaluate beyond-CMOS ONN functionalities for pattern recognition.
面向边缘计算的振荡神经网络多尺度建模与仿真流程
振荡神经网络(ONN)是一种基于将信息编码到振子相位的神经形态计算范式。在本文中,我们提出了一种ONN,其元素单元“神经元”是通过基于二氧化钒(VO2)的超cmos器件实现的。这种ONN技术为执行模式识别任务提供了超低功耗解决方案,非常适合边缘计算应用。然而,探索超越cmos的ONN范式的基础是其工业级开发的必要前提。这样的基础需要建立一个从材料和设备到电路的整体模拟流,以允许评估ONN的性能。在这项工作中,我们报告了这种先进设计方法的结果,特别关注VO2振荡器。这为扩大规模以评估模式识别的cmos ONN功能奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信