TPM: A GPS-based Trajectory Pattern Mining System

Yang Cao, Jingling Yuan, Song Xiao, Qing Xie
{"title":"TPM: A GPS-based Trajectory Pattern Mining System","authors":"Yang Cao, Jingling Yuan, Song Xiao, Qing Xie","doi":"10.1109/besc48373.2019.8963296","DOIUrl":null,"url":null,"abstract":"With the development of big data and artificial intelligence, the technology of urban computing becomes more mature and widely used. In urban computing, using GPS-based trajectory data to discover urban dense areas, extract similar urban trajectories, predict urban traffic, and solve traffic congestion problems are all important issues. This paper presents a GPS-based trajectory pattern mining system called TPM. Firstly, the TPM can mine urban dense areas via clustering the spatial-temporal data, and automatically generate trajectories after the timing trajectory identification. Mainly, we propose a method for trajectory similarity matching, and similar trajectories can be extracted via the trajectory similarity matching in this system. The TPM can be applied to the trajectory system equipped with the GPS device, such as the vehicle trajectory, the bicycle trajectory, the electronic bracelet trajectory, etc., to provide services for traffic navigation and journey recommendation. Meantime, the system can provide support in the decision for urban resource allocation, urban functional region identification, traffic congestion and so on.","PeriodicalId":190867,"journal":{"name":"2019 6th International Conference on Behavioral, Economic and Socio-Cultural Computing (BESC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 6th International Conference on Behavioral, Economic and Socio-Cultural Computing (BESC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/besc48373.2019.8963296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

With the development of big data and artificial intelligence, the technology of urban computing becomes more mature and widely used. In urban computing, using GPS-based trajectory data to discover urban dense areas, extract similar urban trajectories, predict urban traffic, and solve traffic congestion problems are all important issues. This paper presents a GPS-based trajectory pattern mining system called TPM. Firstly, the TPM can mine urban dense areas via clustering the spatial-temporal data, and automatically generate trajectories after the timing trajectory identification. Mainly, we propose a method for trajectory similarity matching, and similar trajectories can be extracted via the trajectory similarity matching in this system. The TPM can be applied to the trajectory system equipped with the GPS device, such as the vehicle trajectory, the bicycle trajectory, the electronic bracelet trajectory, etc., to provide services for traffic navigation and journey recommendation. Meantime, the system can provide support in the decision for urban resource allocation, urban functional region identification, traffic congestion and so on.
基于gps的轨迹模式挖掘系统
随着大数据和人工智能的发展,城市计算技术越来越成熟,应用越来越广泛。在城市计算中,利用gps轨迹数据发现城市密集区域、提取相似城市轨迹、预测城市交通、解决交通拥堵问题都是重要的问题。提出了一种基于gps的轨迹模式挖掘系统TPM。首先,TPM通过对时空数据聚类挖掘城市密集区域,并在识别出时序轨迹后自动生成轨迹;主要提出了一种轨迹相似度匹配方法,通过轨迹相似度匹配提取相似轨迹。TPM可应用于配备GPS设备的轨迹系统,如车辆轨迹、自行车轨迹、电子手环轨迹等,为交通导航和行程推荐提供服务。同时,该系统可以为城市资源配置、城市功能区识别、交通拥堵等决策提供支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信