3D Discrete Spherical Fourier Descriptors Based on Surface Curvature Voxels for Pollen Classification

Yonghua Xie, Michael OhEigeartaigh
{"title":"3D Discrete Spherical Fourier Descriptors Based on Surface Curvature Voxels for Pollen Classification","authors":"Yonghua Xie, Michael OhEigeartaigh","doi":"10.1109/ICIE.2010.56","DOIUrl":null,"url":null,"abstract":"This paper presents a new method to extract 3D Discrete Spherical Fourier Descriptors (DSFD) based on surface curvature voxels for pollen recognition. In order to reduce the high amount of pollen information and noise disturbance, the geometric normalized curvature voxels with the principal curvedness are firstly extracted to represent the intrinsic pollen volumetric data. Then the curvature voxels are decomposed into radial and angular components with Spherical Harmonic Transform in spherical coordinates. Finally the discrete 3D Fourier transform is applied on the decomposed curvature voxels to obtain the 3D Spherical Fourier Descriptors for pollen recognition. Experimental results show that the presented descriptors are invariant to pollen image rotation, scale and translation, and can bring about good recognition precision and speed simultaneously.","PeriodicalId":353239,"journal":{"name":"2010 WASE International Conference on Information Engineering","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 WASE International Conference on Information Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIE.2010.56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper presents a new method to extract 3D Discrete Spherical Fourier Descriptors (DSFD) based on surface curvature voxels for pollen recognition. In order to reduce the high amount of pollen information and noise disturbance, the geometric normalized curvature voxels with the principal curvedness are firstly extracted to represent the intrinsic pollen volumetric data. Then the curvature voxels are decomposed into radial and angular components with Spherical Harmonic Transform in spherical coordinates. Finally the discrete 3D Fourier transform is applied on the decomposed curvature voxels to obtain the 3D Spherical Fourier Descriptors for pollen recognition. Experimental results show that the presented descriptors are invariant to pollen image rotation, scale and translation, and can bring about good recognition precision and speed simultaneously.
基于曲面曲率体素的花粉分类三维离散球面傅里叶描述子
提出了一种基于曲面曲率体素的花粉三维离散球面傅里叶描述子提取方法。为了减少花粉信息量过大和噪声干扰,首先提取具有主曲率的几何归一化曲率体素来表示花粉的固有体积数据。然后在球坐标下用球谐变换将曲率体素分解为径向分量和角分量。最后对分解后的曲率体素进行离散三维傅里叶变换,得到用于花粉识别的三维球面傅里叶描述子。实验结果表明,所提出的描述符对花粉图像的旋转、尺度和平移具有不变性,同时具有较好的识别精度和速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信