Non-equilibrium thermodynamics in a single-molecule quantum system

E. Pyurbeeva, J. O. Thomas, J. Mol
{"title":"Non-equilibrium thermodynamics in a single-molecule quantum system","authors":"E. Pyurbeeva, J. O. Thomas, J. Mol","doi":"10.1088/2633-4356/accd3a","DOIUrl":null,"url":null,"abstract":"\n Thermodynamic probes can be used to deduce microscopic internal dynamics of nanoscale quantum systems. Several direct entropy measurement protocols based on charge transport measurements have been proposed and experimentally applied to single-electron devices. To date, these methods have relied on (quasi-)equilibrium conditions between the nanoscale quantum system and its environment, which constitutes only a small subset of the experimental conditions available. In this paper, we establish a thermodynamic analysis method based on stochastic thermodynamics, that is valid far from equilibrium conditions, is applicable to a broad range of single-electron devices and allows us to find the difference in entropy between the charge states of the nanodevice, as well as a characteristic of any selection rules governing electron transfers. We apply this non-equilibrium entropy measurement protocol to a single-molecule device in which the internal dynamics can be described by a two-site Hubbard model.","PeriodicalId":345750,"journal":{"name":"Materials for Quantum Technology","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Quantum Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2633-4356/accd3a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Thermodynamic probes can be used to deduce microscopic internal dynamics of nanoscale quantum systems. Several direct entropy measurement protocols based on charge transport measurements have been proposed and experimentally applied to single-electron devices. To date, these methods have relied on (quasi-)equilibrium conditions between the nanoscale quantum system and its environment, which constitutes only a small subset of the experimental conditions available. In this paper, we establish a thermodynamic analysis method based on stochastic thermodynamics, that is valid far from equilibrium conditions, is applicable to a broad range of single-electron devices and allows us to find the difference in entropy between the charge states of the nanodevice, as well as a characteristic of any selection rules governing electron transfers. We apply this non-equilibrium entropy measurement protocol to a single-molecule device in which the internal dynamics can be described by a two-site Hubbard model.
单分子量子系统中的非平衡热力学
热力学探针可以用来推断纳米级量子系统的微观内部动力学。提出了几种基于电荷输运测量的直接熵测量方法,并在实验中应用于单电子器件。到目前为止,这些方法都依赖于纳米级量子系统与其环境之间的(准)平衡条件,这只是可用实验条件的一小部分。在本文中,我们建立了一种基于随机热力学的热力学分析方法,该方法在远离平衡条件的情况下有效,适用于广泛的单电子器件,并使我们能够发现纳米器件的电荷状态之间的熵差,以及控制电子转移的任何选择规则的特征。我们将这种非平衡熵测量方案应用于单分子装置,其中内部动力学可以用两个位点的Hubbard模型来描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信