{"title":"Maintaining the spatial stability of a swarm of autonomous unmanned aerial vehicles","authors":"A. Boyko, Ruben Girgidov","doi":"10.31776/rtcj.9201","DOIUrl":null,"url":null,"abstract":"This paper describes the application of a swarm engineering methodology that allows creating hexagonal UAV grids with predefined properties. It is achieved by imitation of physics processes that demonstrate conditions for stabilizing the above-mention hexagon grids of UAV swarm. We propose a simple combination of software and hardware applications that create a more efficient practical solution.","PeriodicalId":376940,"journal":{"name":"Robotics and Technical Cybernetics","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Technical Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31776/rtcj.9201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper describes the application of a swarm engineering methodology that allows creating hexagonal UAV grids with predefined properties. It is achieved by imitation of physics processes that demonstrate conditions for stabilizing the above-mention hexagon grids of UAV swarm. We propose a simple combination of software and hardware applications that create a more efficient practical solution.