Jiafeng Ni, W. Xuan, Yilin Li, Wenjun Li, S. Dong, Jikui Luo
{"title":"Simulation Analysis of High Frequency and High Pressure Piezoelectric Micro-Pump","authors":"Jiafeng Ni, W. Xuan, Yilin Li, Wenjun Li, S. Dong, Jikui Luo","doi":"10.1109/SPAWDA56268.2022.10046021","DOIUrl":null,"url":null,"abstract":"In this paper, a piezoelectric micro-pump with integrated valve based on synthetic jet structure is proposed. The piezoelectric micro-pump possesses a size of about 16mm*16mm*3mm, which works at the first-order resonant frequency of 11649Hz. With the rectangular wave driving signal has the amplitude of 24V, the average output flow of the piezoelectric micro-pump is about 139.5 mL /min. The maximum output pressure can reach more than 30 kPa. Compared with the existing piezoelectric pump, it has the advantages of high-pressure retention and small size, indicating a potential application in wearable device such as smart pressure watch.","PeriodicalId":387693,"journal":{"name":"2022 16th Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 16th Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWDA56268.2022.10046021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a piezoelectric micro-pump with integrated valve based on synthetic jet structure is proposed. The piezoelectric micro-pump possesses a size of about 16mm*16mm*3mm, which works at the first-order resonant frequency of 11649Hz. With the rectangular wave driving signal has the amplitude of 24V, the average output flow of the piezoelectric micro-pump is about 139.5 mL /min. The maximum output pressure can reach more than 30 kPa. Compared with the existing piezoelectric pump, it has the advantages of high-pressure retention and small size, indicating a potential application in wearable device such as smart pressure watch.
提出了一种基于合成射流结构的集成阀式压电微泵。压电微型泵的尺寸约为16mm*16mm*3mm,工作在11649Hz的一阶谐振频率下。当矩形波驱动信号的幅值为24V时,压电微泵的平均输出流量约为139.5 mL /min。最大输出压力可达30kpa以上。与现有的压电泵相比,它具有高压保持和体积小的优点,在智能压力手表等可穿戴设备中具有潜在的应用前景。