Path scheduling on digital microfluidic biochips

D. Grissom, P. Brisk
{"title":"Path scheduling on digital microfluidic biochips","authors":"D. Grissom, P. Brisk","doi":"10.1145/2228360.2228367","DOIUrl":null,"url":null,"abstract":"Since the inception of digital microfluidics, the synthesis problems of scheduling, placement and routing have been performed offline (before runtime) due to their algorithmic complexity. However, with the increasing maturity of digital microfluidic research, online synthesis is becoming a realistic possibility that can bring new benefits in the areas of dynamic scheduling, control-flow, fault-tolerance and live-feedback. This paper contributes to the digital microfluidic synthesis process by introducing a fast, novel path-based scheduling algorithm that produces better schedules than list scheduler for assays with high fan-out; path scheduler computes schedules in milliseconds, making it suitable for both offline and online synthesis.","PeriodicalId":263599,"journal":{"name":"DAC Design Automation Conference 2012","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"69","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DAC Design Automation Conference 2012","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2228360.2228367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 69

Abstract

Since the inception of digital microfluidics, the synthesis problems of scheduling, placement and routing have been performed offline (before runtime) due to their algorithmic complexity. However, with the increasing maturity of digital microfluidic research, online synthesis is becoming a realistic possibility that can bring new benefits in the areas of dynamic scheduling, control-flow, fault-tolerance and live-feedback. This paper contributes to the digital microfluidic synthesis process by introducing a fast, novel path-based scheduling algorithm that produces better schedules than list scheduler for assays with high fan-out; path scheduler computes schedules in milliseconds, making it suitable for both offline and online synthesis.
数字微流控生物芯片的路径调度
自数字微流体开始以来,由于算法复杂性,调度、放置和路由的综合问题一直在离线(运行前)进行。然而,随着数字微流控研究的日益成熟,在线合成正在成为一种现实的可能性,可以在动态调度、控制流、容错和实时反馈等领域带来新的效益。本文通过引入一种快速、新颖的基于路径的调度算法,为数字微流控合成过程做出了贡献,该算法对高扇出分析产生了比列表调度更好的调度;路径调度程序以毫秒为单位计算调度,使其适合离线和在线合成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信