A Review of Methods for Estimating the Power Generation of Invisible Solar Sites

Yi-Hui Lai, Yuan-Kang Wu
{"title":"A Review of Methods for Estimating the Power Generation of Invisible Solar Sites","authors":"Yi-Hui Lai, Yuan-Kang Wu","doi":"10.1109/IS3C50286.2020.00115","DOIUrl":null,"url":null,"abstract":"With the growth of PV power generation in power systems, the information about the total PV generation is critical. If there is no accurate PV generation data, it will be a difficult task to ensure the stability of the power system. Invisible solar power generation is the PV generation that is unknown to the power system operator, it could affect the stability of power system operations. Hence, it is important to estimate the PV generation of invisible solar sites. With available data of visible PV sites, different approaches have been developed to estimate the invisible solar generation. For instance, several approaches use the advanced metering infrastructure (AMI) data with statistical methods to estimate invisible PV generation. Several approaches estimate the invisible PV generation by considering the local solar irradiation or using the selected representative sites with artificial intelligent technologies. Other approaches also include data-dimension reduction engines with a mapping function. This paper presents a literature review on the common approaches of estimating the power generation of invisible photovoltaic sites and compares the state-of-the-art estimation methods.","PeriodicalId":143430,"journal":{"name":"2020 International Symposium on Computer, Consumer and Control (IS3C)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Symposium on Computer, Consumer and Control (IS3C)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IS3C50286.2020.00115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

With the growth of PV power generation in power systems, the information about the total PV generation is critical. If there is no accurate PV generation data, it will be a difficult task to ensure the stability of the power system. Invisible solar power generation is the PV generation that is unknown to the power system operator, it could affect the stability of power system operations. Hence, it is important to estimate the PV generation of invisible solar sites. With available data of visible PV sites, different approaches have been developed to estimate the invisible solar generation. For instance, several approaches use the advanced metering infrastructure (AMI) data with statistical methods to estimate invisible PV generation. Several approaches estimate the invisible PV generation by considering the local solar irradiation or using the selected representative sites with artificial intelligent technologies. Other approaches also include data-dimension reduction engines with a mapping function. This paper presents a literature review on the common approaches of estimating the power generation of invisible photovoltaic sites and compares the state-of-the-art estimation methods.
估算不可见太阳站点发电量的方法综述
随着光伏发电在电力系统中的增长,光伏发电总量的信息变得至关重要。如果没有准确的光伏发电数据,保证电力系统的稳定性将是一项艰巨的任务。隐形太阳能发电是电力系统运营商不知道的光伏发电,它可能会影响电力系统运行的稳定性。因此,估算不可见太阳能站点的光伏发电量是很重要的。利用现有的可见光伏电站数据,人们开发了不同的方法来估计不可见的太阳能发电量。例如,有几种方法使用先进的计量基础设施(AMI)数据和统计方法来估计不可见的光伏发电。有几种方法通过考虑局部太阳照射或使用人工智能技术选择具有代表性的站点来估计不可见光伏发电。其他方法还包括带有映射功能的数据降维引擎。本文综述了估算隐形光伏电站发电量的常用方法,并对目前最先进的估算方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信