Hyun-Chul Park, S. Daneshgar, J. Rode, Z. Griffith, M. Urteaga, Byung-sung Kim, M. Rodwell
{"title":"30% PAE W-Band InP Power Amplifiers Using Sub-Quarter-Wavelength Baluns for Series-Connected Power-Combining","authors":"Hyun-Chul Park, S. Daneshgar, J. Rode, Z. Griffith, M. Urteaga, Byung-sung Kim, M. Rodwell","doi":"10.1109/CSICS.2013.6659182","DOIUrl":null,"url":null,"abstract":"We present high-efficiency W-band power amplifier (PA) ICs with a new series-connected power combining technique using sub-quarter-wavelength transmission- line baluns. The PAs are implemented in a 0.25μm InP HBT process. At 86GHz, a single-stage PA exhibits 30.4% peak PAE, 20.37dBm Pout and 23GHz 3dB bandwidth. A two-stage PA exhibits 30.2% PAE, and 23.14dBm Pout. These values of PAE represent a 1.2:1 improvement in the state-of-the-art for E- and W- band PAs having similar RF output powers.","PeriodicalId":257256,"journal":{"name":"2013 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSICS.2013.6659182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
We present high-efficiency W-band power amplifier (PA) ICs with a new series-connected power combining technique using sub-quarter-wavelength transmission- line baluns. The PAs are implemented in a 0.25μm InP HBT process. At 86GHz, a single-stage PA exhibits 30.4% peak PAE, 20.37dBm Pout and 23GHz 3dB bandwidth. A two-stage PA exhibits 30.2% PAE, and 23.14dBm Pout. These values of PAE represent a 1.2:1 improvement in the state-of-the-art for E- and W- band PAs having similar RF output powers.