Adaptive Cutting Force Observer for Machine Tool Considering Stage Parameter Variation

K. Ohno, H. Fujimoto, Yoshihiro Isaoka, Yuki Terada
{"title":"Adaptive Cutting Force Observer for Machine Tool Considering Stage Parameter Variation","authors":"K. Ohno, H. Fujimoto, Yoshihiro Isaoka, Yuki Terada","doi":"10.1109/ICM46511.2021.9385598","DOIUrl":null,"url":null,"abstract":"Monitoring cutting force generated during the machining process is crucial to prevent tool breakage and chattering. The cutting force observer, which considers the machine tool as the two-inertia system, has been proposed to estimate cutting forces in wide bandwidth using multiple encoders. However, modeling errors and the parameter variation during machining can deteriorate estimation accuracy in such a model-based observer. Previous studies solved some modeling error issues, but inertia, friction, and other parameters that belong to the moving stage had rarely considered. Therefore, the adaptive cutting force observer is proposed in this paper. The proposal consists of online stage parameter identification and updating algorithm. The effectiveness of the proposed adaptive observer is demonstrated through the experiments using the simplified experimental setup.","PeriodicalId":373423,"journal":{"name":"2021 IEEE International Conference on Mechatronics (ICM)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Mechatronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM46511.2021.9385598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Monitoring cutting force generated during the machining process is crucial to prevent tool breakage and chattering. The cutting force observer, which considers the machine tool as the two-inertia system, has been proposed to estimate cutting forces in wide bandwidth using multiple encoders. However, modeling errors and the parameter variation during machining can deteriorate estimation accuracy in such a model-based observer. Previous studies solved some modeling error issues, but inertia, friction, and other parameters that belong to the moving stage had rarely considered. Therefore, the adaptive cutting force observer is proposed in this paper. The proposal consists of online stage parameter identification and updating algorithm. The effectiveness of the proposed adaptive observer is demonstrated through the experiments using the simplified experimental setup.
考虑阶段参数变化的机床自适应切削力观测器
监测加工过程中产生的切削力是防止刀具断裂和颤振的关键。提出了一种考虑机床为双惯量系统的切削力观测器,利用多编码器在宽带宽下估计切削力。然而,在这种基于模型的观测器中,建模误差和加工过程中的参数变化会降低估计精度。以往的研究解决了一些建模误差问题,但很少考虑惯性、摩擦等属于运动阶段的参数。为此,本文提出了自适应切削力观测器。该方案包括在线舞台参数辨识和更新算法。在简化的实验装置上进行了实验,验证了自适应观测器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信