The potential of nanoparticle ink-based processing for Chalcogenide photovoltaics

C. Hages, C. Miskin, Steven M. Mcleod, Wei-Chang D. Yang, Nathaniel J. Carter, E. Stach, R. Agrawal
{"title":"The potential of nanoparticle ink-based processing for Chalcogenide photovoltaics","authors":"C. Hages, C. Miskin, Steven M. Mcleod, Wei-Chang D. Yang, Nathaniel J. Carter, E. Stach, R. Agrawal","doi":"10.1109/PVSC-VOL2.2014.7588255","DOIUrl":null,"url":null,"abstract":"Nanoparticle ink-based absorber layers coupled with selenization represent a robust method for the formation of chalcogenide photovoltaics with tremendous potential for low-cost, roll-to-roll manufacturing. We first present our current state-of-the-art nanoparticle ink-based devices with total-area efficiencies of 15.0% for Cu(In<sub>y</sub>Ga<sub>1-y</sub>)(S<sub>x</sub>Se<sub>1-x</sub>)<sub>2</sub> (CIGSSe), 9.0% for Cu<sub>2</sub>ZnSn(S<sub>x</sub>Se<sub>1-x</sub>)<sub>4</sub> (CZTSSe), and 9.4% for Cu<sub>2</sub>Zn(S<sub>n</sub>yGe<sub>1-y</sub>)(S<sub>x</sub>Se<sub>1-x</sub>)<sub>4</sub> (CZTGeSSe). Similarities in the material and electrical properties of devices fabricated from all three material families are considered. Major factors contributing to device performance limitations are discussed in terms of absorber morphology and material properties following selenization, notably, alloy (compositional) fluctuations and the presence of a fine-grain layer. Through analysis of these limitations we also present a path forward for the fabrication of high-performance devices. In spite of the present challenges, this technique outperforms many others, demonstrating the tremendous potential of this technology.","PeriodicalId":251298,"journal":{"name":"2014 IEEE 40th Photovoltaic Specialists Conference (PVSC) Volume 2","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 40th Photovoltaic Specialists Conference (PVSC) Volume 2","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC-VOL2.2014.7588255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Nanoparticle ink-based absorber layers coupled with selenization represent a robust method for the formation of chalcogenide photovoltaics with tremendous potential for low-cost, roll-to-roll manufacturing. We first present our current state-of-the-art nanoparticle ink-based devices with total-area efficiencies of 15.0% for Cu(InyGa1-y)(SxSe1-x)2 (CIGSSe), 9.0% for Cu2ZnSn(SxSe1-x)4 (CZTSSe), and 9.4% for Cu2Zn(SnyGe1-y)(SxSe1-x)4 (CZTGeSSe). Similarities in the material and electrical properties of devices fabricated from all three material families are considered. Major factors contributing to device performance limitations are discussed in terms of absorber morphology and material properties following selenization, notably, alloy (compositional) fluctuations and the presence of a fine-grain layer. Through analysis of these limitations we also present a path forward for the fabrication of high-performance devices. In spite of the present challenges, this technique outperforms many others, demonstrating the tremendous potential of this technology.
纳米颗粒油墨基加工硫系光伏电池的潜力
纳米颗粒油墨基吸收层与硒化相结合代表了形成硫系光伏电池的一种强大方法,具有低成本,卷对卷制造的巨大潜力。我们首先展示了我们目前最先进的纳米颗粒墨水基器件,Cu(InyGa1-y)(SxSe1-x)2 (CIGSSe)的总面积效率为15.0%,Cu2ZnSn(SxSe1-x)4 (CZTSSe)的总面积效率为9.0%,Cu2Zn(SnyGe1-y)(SxSe1-x)4 (CZTGeSSe)的总面积效率为9.4%。在材料和电气性能的相似之处,由所有三种材料家族制造的器件被考虑。从吸收器形态和硒化后的材料性能方面讨论了导致器件性能限制的主要因素,特别是合金(成分)波动和细晶粒层的存在。通过对这些局限性的分析,我们也为高性能器件的制造提出了一条前进的道路。尽管目前存在挑战,但该技术的性能优于许多其他技术,显示了该技术的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信