Rajesh Js, D. Ancajas, Koushik Chakraborty, Sanghamitra Roy
{"title":"Runtime Detection of a Bandwidth Denial Attack from a Rogue Network-on-Chip","authors":"Rajesh Js, D. Ancajas, Koushik Chakraborty, Sanghamitra Roy","doi":"10.1145/2786572.2786580","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a covert threat model for MPSoCs designed using 3rd party Network-on-Chips (NoC). We illustrate that a malicious NoC can disrupt the availability of on-chip resources, thereby causing large performance bottlenecks for the software running on the MPSoC platform. We then propose a runtime latency auditor that enables an MPSoC integrator to monitor the trustworthiness of the deployed NoC throughout the chip lifetime. For the proposed technique, our comprehensive cross-layer analysis indicates modest overheads of 12.73% in area, 9.844% in power and 5.4% in terms of network latency.","PeriodicalId":228605,"journal":{"name":"Proceedings of the 9th International Symposium on Networks-on-Chip","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Symposium on Networks-on-Chip","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2786572.2786580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59
Abstract
In this paper, we propose a covert threat model for MPSoCs designed using 3rd party Network-on-Chips (NoC). We illustrate that a malicious NoC can disrupt the availability of on-chip resources, thereby causing large performance bottlenecks for the software running on the MPSoC platform. We then propose a runtime latency auditor that enables an MPSoC integrator to monitor the trustworthiness of the deployed NoC throughout the chip lifetime. For the proposed technique, our comprehensive cross-layer analysis indicates modest overheads of 12.73% in area, 9.844% in power and 5.4% in terms of network latency.