Sentinel-1 Time-Series Analysis for Fires Monitoring using Google Earth Engine Tools

M. Gargiulo, A. Iodice, D. Riccio, G. Ruello
{"title":"Sentinel-1 Time-Series Analysis for Fires Monitoring using Google Earth Engine Tools","authors":"M. Gargiulo, A. Iodice, D. Riccio, G. Ruello","doi":"10.1109/rtsi50628.2021.9597373","DOIUrl":null,"url":null,"abstract":"Nowadays, the Earth remote-sensed observations are extensively used to manage risk, monitor forest, land cover/land use, and other applications. This work presents a Remote Sensing approach based on the Google Earth Engine (GEE) tools to monitor wildfires using Sentinel-1 data. In particular, we proposed a SAR Index using the Sentinel-1 SAR VV and VH backscatter. The SAR index (SI) effectiveness is tested on the Vesuvius area in a five-year time-series (2015–2020) analysis to determine useful information about the fire events occurrences in the presence of a pine forest. Further, the SAR index capability's advantages and disadvantages are considered in change detection analysis with a differential multi-temporal approach. The numerical and visual results encourage us to use the SI index in fires monitoring.","PeriodicalId":294628,"journal":{"name":"2021 IEEE 6th International Forum on Research and Technology for Society and Industry (RTSI)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 6th International Forum on Research and Technology for Society and Industry (RTSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/rtsi50628.2021.9597373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays, the Earth remote-sensed observations are extensively used to manage risk, monitor forest, land cover/land use, and other applications. This work presents a Remote Sensing approach based on the Google Earth Engine (GEE) tools to monitor wildfires using Sentinel-1 data. In particular, we proposed a SAR Index using the Sentinel-1 SAR VV and VH backscatter. The SAR index (SI) effectiveness is tested on the Vesuvius area in a five-year time-series (2015–2020) analysis to determine useful information about the fire events occurrences in the presence of a pine forest. Further, the SAR index capability's advantages and disadvantages are considered in change detection analysis with a differential multi-temporal approach. The numerical and visual results encourage us to use the SI index in fires monitoring.
使用谷歌地球引擎工具进行火灾监测的Sentinel-1时间序列分析
目前,地球遥感观测被广泛用于风险管理、森林监测、土地覆盖/土地利用和其他应用。本研究提出了一种基于Google Earth Engine (GEE)工具的遥感方法,利用Sentinel-1数据监测野火。特别地,我们提出了一个利用Sentinel-1 SAR VV和VH后向散射的SAR指数。SAR指数(SI)的有效性在维苏威火山地区进行了五年时间序列(2015-2020)分析,以确定松树林存在的火灾事件发生的有用信息。在此基础上,考虑了SAR指标能力在差分多时相变化检测分析中的优缺点。数值和可视化结果鼓励我们在火灾监测中使用SI指数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信