J. Jargon, Chihyun Cho, Dylan F. Williams, P. Hale
{"title":"Physical models for 2.4 mm and 3.5 mm coaxial VNA calibration kits developed within the NIST microwave uncertainty framework","authors":"J. Jargon, Chihyun Cho, Dylan F. Williams, P. Hale","doi":"10.1109/ARFTG.2015.7162913","DOIUrl":null,"url":null,"abstract":"We developed physical models of commercially-available 2.4 mm and 3.5 mm coaxial calibration kits for vector network analyzers. These models support multiline thru-reflect-line (TRL) and open-short-load-thru (OSLT) calibrations, and include error mechanisms in each of the standards' constituent parameters that can be utilized in the NIST Microwave Uncertainty Framework to propagate uncertainties. For both connector sizes, we calibrated a network analyzer using the two calibration methods, and compared measurements and uncertainties made on a number of verification devices. In both cases, we showed that the two calibrations agree to within their respective uncertainties.","PeriodicalId":228314,"journal":{"name":"2015 85th Microwave Measurement Conference (ARFTG)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 85th Microwave Measurement Conference (ARFTG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARFTG.2015.7162913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
We developed physical models of commercially-available 2.4 mm and 3.5 mm coaxial calibration kits for vector network analyzers. These models support multiline thru-reflect-line (TRL) and open-short-load-thru (OSLT) calibrations, and include error mechanisms in each of the standards' constituent parameters that can be utilized in the NIST Microwave Uncertainty Framework to propagate uncertainties. For both connector sizes, we calibrated a network analyzer using the two calibration methods, and compared measurements and uncertainties made on a number of verification devices. In both cases, we showed that the two calibrations agree to within their respective uncertainties.