Fabrication of a Robust Superhydrophobic Ti6Al4V Surface

Lei Xia, Faze Chen, Jiaqi Chao, Zexin Cai, Zhen Yang, Yanling Tian, Dawei Zhang
{"title":"Fabrication of a Robust Superhydrophobic Ti6Al4V Surface","authors":"Lei Xia, Faze Chen, Jiaqi Chao, Zexin Cai, Zhen Yang, Yanling Tian, Dawei Zhang","doi":"10.1109/3M-NANO56083.2022.9941517","DOIUrl":null,"url":null,"abstract":"Inspired by superhydrophobic biological surfaces in nature, hierarchically non-wetting surfaces have attracted extensive attention in both academia and industry. The present work aims to discuss the relationship between the robustness of superhydrophobic Ti6Al4V surface and micro/nanostructure features. Herein, we fabricated three types of superhydrophobic surfaces (nanostructure, microstructure, and micro-nano structure) on Ti6Al4V substrate, and all of these resultant surfaces were endowed with the superhydrophobicity and showed a large apparent contact angle (>150°) and low liquid adhesion roll-off angle (<10°). Nanostructures and microstructures were fabricated by hydrothermal and laser ablation, respectively. Micro-nanostructures were fabricated using a hybrid method consisting of laser ablation and hydrothermal treatment. Subsequently, the surface morphology, surface chemical composition, and wetting property were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), and contact angle measurement, respectively. Furthermore, we studied the robustness of three types of superhydrophobic Ti6Al4V surfaces, which proved that micro-nanostructures surfaces possessed both good thermal durability and excellent mechanical stability.","PeriodicalId":370631,"journal":{"name":"2022 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3M-NANO56083.2022.9941517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Inspired by superhydrophobic biological surfaces in nature, hierarchically non-wetting surfaces have attracted extensive attention in both academia and industry. The present work aims to discuss the relationship between the robustness of superhydrophobic Ti6Al4V surface and micro/nanostructure features. Herein, we fabricated three types of superhydrophobic surfaces (nanostructure, microstructure, and micro-nano structure) on Ti6Al4V substrate, and all of these resultant surfaces were endowed with the superhydrophobicity and showed a large apparent contact angle (>150°) and low liquid adhesion roll-off angle (<10°). Nanostructures and microstructures were fabricated by hydrothermal and laser ablation, respectively. Micro-nanostructures were fabricated using a hybrid method consisting of laser ablation and hydrothermal treatment. Subsequently, the surface morphology, surface chemical composition, and wetting property were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), and contact angle measurement, respectively. Furthermore, we studied the robustness of three types of superhydrophobic Ti6Al4V surfaces, which proved that micro-nanostructures surfaces possessed both good thermal durability and excellent mechanical stability.
一种鲁棒超疏水Ti6Al4V表面的制备
受自然界超疏水生物表面的启发,分层不湿润表面引起了学术界和工业界的广泛关注。本工作旨在探讨超疏水Ti6Al4V表面的鲁棒性与微纳米结构特征之间的关系。本文在Ti6Al4V衬底上制备了纳米结构、微结构和微纳米结构三种超疏水表面,所制备的表面均具有超疏水特性,且具有大的表观接触角(>150°)和低的液体粘附滚转角(<10°)。采用热液烧蚀法和激光烧蚀法分别制备了纳米结构和微结构。采用激光烧蚀和水热处理相结合的方法制备微纳米结构。随后,分别通过扫描电镜(SEM)、x射线衍射(XRD)和接触角测量对其表面形貌、表面化学成分和润湿性能进行了表征。此外,我们研究了三种超疏水Ti6Al4V表面的鲁棒性,证明了微纳米结构表面具有良好的热耐久性和优异的机械稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信