Nonradiative trapping and localization in intermediate band solar cells

J. Krich
{"title":"Nonradiative trapping and localization in intermediate band solar cells","authors":"J. Krich","doi":"10.1109/PVSC-VOL2.2013.7179242","DOIUrl":null,"url":null,"abstract":"For intermediate band solar cells (IBSC) to achieve high efficiency, the gains in light absorption due to the intermediate band (IB) must exceed the nonradiative losses from mid-gap states. An important proposal holds that in IB's formed from bulk doping, when the energy states of the IB are delocalized (i.e., metallic), they do not significantly reduce the nonradiative lifetime. We show that this proposal is incorrect because the motion of the crystal lattice will always relocalize IB states. We compare this result to band-to-band nonradiative recombination, which is well known to be slow. For IBSC's to realize their potential, research must move away from delocalizing IB states.","PeriodicalId":413736,"journal":{"name":"2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) PART 2","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) PART 2","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC-VOL2.2013.7179242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For intermediate band solar cells (IBSC) to achieve high efficiency, the gains in light absorption due to the intermediate band (IB) must exceed the nonradiative losses from mid-gap states. An important proposal holds that in IB's formed from bulk doping, when the energy states of the IB are delocalized (i.e., metallic), they do not significantly reduce the nonradiative lifetime. We show that this proposal is incorrect because the motion of the crystal lattice will always relocalize IB states. We compare this result to band-to-band nonradiative recombination, which is well known to be slow. For IBSC's to realize their potential, research must move away from delocalizing IB states.
中波段太阳能电池的非辐射捕获和定位
为了使中间带太阳能电池(IBSC)获得高效率,中间带(IB)的光吸收增益必须超过中隙状态的非辐射损失。一个重要的建议认为,在本体掺杂形成的IB中,当IB的能态离域(即金属态)时,它们不会显着降低非辐射寿命。我们证明了这种建议是不正确的,因为晶格的运动总是会使IB态重新定位。我们将这一结果与波段到波段的非辐射复合进行比较,后者众所周知是缓慢的。为了使IBSC发挥其潜力,研究必须摆脱对IBSC状态的局部化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信