Analysis of Dynamic Anti-Plane Characteristics of Circular Inclusion and Semicircular Depression in Strip Piezoelectric Media by SH Guided Wave

H. Qi, Enxiang Qu, Jing Guo, Guangqian Liu
{"title":"Analysis of Dynamic Anti-Plane Characteristics of Circular Inclusion and Semicircular Depression in Strip Piezoelectric Media by SH Guided Wave","authors":"H. Qi, Enxiang Qu, Jing Guo, Guangqian Liu","doi":"10.1109/SPAWDA48812.2019.9019231","DOIUrl":null,"url":null,"abstract":"The guided wave theory is used to study the scattering of SH guided waves in circular inclusions and semi-circular depressions in infinite piezoelectric strips. The semi-circular depression at the boundary position is treated by the multi-pole coordinate variation method. Using the contingency image method, the theoretical expression of the scattered wave satisfying the stress-free and electrical insulation conditions at the upper and lower boundaries of the band is constructed. Based on the boundary conditions, an integral equation is established. An analytical expression for the dynamic stress concentration factor (DSCF) and electric field intensity concentration factor (EFICF) are obtained. The DSCF and EFICF are analyzed by analyzing the order of the guided wave and the physical parameters of the medium, and compared with the existing literature in the calculation example.","PeriodicalId":208819,"journal":{"name":"2019 14th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 14th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWDA48812.2019.9019231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The guided wave theory is used to study the scattering of SH guided waves in circular inclusions and semi-circular depressions in infinite piezoelectric strips. The semi-circular depression at the boundary position is treated by the multi-pole coordinate variation method. Using the contingency image method, the theoretical expression of the scattered wave satisfying the stress-free and electrical insulation conditions at the upper and lower boundaries of the band is constructed. Based on the boundary conditions, an integral equation is established. An analytical expression for the dynamic stress concentration factor (DSCF) and electric field intensity concentration factor (EFICF) are obtained. The DSCF and EFICF are analyzed by analyzing the order of the guided wave and the physical parameters of the medium, and compared with the existing literature in the calculation example.
SH导波对带状压电介质中圆形夹杂和半圆形凹陷的动态反平面特性分析
利用导波理论研究了无限长压电片中圆形夹杂和半圆形凹陷中SH导波的散射特性。采用多极坐标变分法处理边界位置的半圆凹陷。利用权变图像法,构造了满足带上下边界无应力和电绝缘条件的散射波的理论表达式。基于边界条件,建立了积分方程。得到了动态应力集中因子(DSCF)和电场强度集中因子(EFICF)的解析表达式。通过对导波阶数和介质物理参数的分析,对DSCF和EFICF进行了分析,并在算例中与已有文献进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信