{"title":"How learning environment predicts male and female students’ physics motivational beliefs in introductory physics courses","authors":"Yangqiuting Li, Kyle M. Whitcomb, C. Singh","doi":"10.1119/perc.2020.pr.Li","DOIUrl":null,"url":null,"abstract":"In this study, we adapt prior identity framework to investigate the effect of learning environment (including perceived recognition, peer interaction and sense of belonging) on students' physics self-efficacy, interest and identity by controlling for their self-efficacy and interest at the beginning of a calculus-based introductory physics course. We surveyed 1203 students, 35% of whom were women. We found that female students' physics self-efficacy and interest were lower than male students' at the beginning of the course, and the gender gaps in these motivational constructs became even larger by the end of the course. Analysis revealed that the decrease in students' physics self-efficacy and interest were mediated by the learning environment and ultimately affected students' physics identity. Our model shows that perceived recognition played a major role in explaining students' physics identity, and students' sense of belonging in physics played an important role in explaining the change in students' physics self-efficacy.","PeriodicalId":269466,"journal":{"name":"2020 Physics Education Research Conference Proceedings","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Physics Education Research Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1119/perc.2020.pr.Li","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In this study, we adapt prior identity framework to investigate the effect of learning environment (including perceived recognition, peer interaction and sense of belonging) on students' physics self-efficacy, interest and identity by controlling for their self-efficacy and interest at the beginning of a calculus-based introductory physics course. We surveyed 1203 students, 35% of whom were women. We found that female students' physics self-efficacy and interest were lower than male students' at the beginning of the course, and the gender gaps in these motivational constructs became even larger by the end of the course. Analysis revealed that the decrease in students' physics self-efficacy and interest were mediated by the learning environment and ultimately affected students' physics identity. Our model shows that perceived recognition played a major role in explaining students' physics identity, and students' sense of belonging in physics played an important role in explaining the change in students' physics self-efficacy.