PowKMeans: A Hybrid Approach for Gray Sheep Users Detection and Their Recommendations

Honey Jindal, Shalini Agarwal, Neetu Sardana
{"title":"PowKMeans: A Hybrid Approach for Gray Sheep Users Detection and Their Recommendations","authors":"Honey Jindal, Shalini Agarwal, Neetu Sardana","doi":"10.4018/IJITWE.2018040106","DOIUrl":null,"url":null,"abstract":"This article describes how recommender systems are software applications or web portals that generate personalized preferences using information filtering techniques, with a goal to support decision-makingoftheusers.Collaborative-basedtechniquesareoftenusedtopredicttheunknown preferencesoftheuserbaseduponhispastpreferencesorthepreferencesofthesimilarusersthat havealreadybeenidentified.Auserwhichhasahighcorrelationwithanygroupofusersisknown aswhiteuserwhereastheuserswhichhavelesscorrelationwithanygroupofusersareknownas gray-sheepusers.Thepresenceofgray-sheepusersaffectstheaccuracyofthemodel,andgenerates inaccuratepredictions.Toimprovethepredictionaccuracy,itisimportanttodifferentiategraysheep usersfromwhiteusers.ExperimentalresultsshowthatPowKMeansiseffectiveinimprovingthe predictionaccuracyby4.62%.IthasalsoshownreductioninMeanAbsoluteErrorby0.7757. KEyWoRDS Collaborative Filtering, Gray-Sheep Users, K-Means++, PowKMeans, Recommender System","PeriodicalId":222340,"journal":{"name":"Int. J. Inf. Technol. Web Eng.","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Inf. Technol. Web Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJITWE.2018040106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This article describes how recommender systems are software applications or web portals that generate personalized preferences using information filtering techniques, with a goal to support decision-makingoftheusers.Collaborative-basedtechniquesareoftenusedtopredicttheunknown preferencesoftheuserbaseduponhispastpreferencesorthepreferencesofthesimilarusersthat havealreadybeenidentified.Auserwhichhasahighcorrelationwithanygroupofusersisknown aswhiteuserwhereastheuserswhichhavelesscorrelationwithanygroupofusersareknownas gray-sheepusers.Thepresenceofgray-sheepusersaffectstheaccuracyofthemodel,andgenerates inaccuratepredictions.Toimprovethepredictionaccuracy,itisimportanttodifferentiategraysheep usersfromwhiteusers.ExperimentalresultsshowthatPowKMeansiseffectiveinimprovingthe predictionaccuracyby4.62%.IthasalsoshownreductioninMeanAbsoluteErrorby0.7757. KEyWoRDS Collaborative Filtering, Gray-Sheep Users, K-Means++, PowKMeans, Recommender System
PowKMeans:一种灰羊用户检测的混合方法及其建议
这篇文章描述了推荐系统是如何使用信息过滤技术生成个性化偏好的软件应用程序或web门户,其目标是支持decision-makingoftheusers。Collaborative-basedtechniquesareoftenusedtopredicttheunknown preferencesoftheuserbaseduponhispastpreferencesorthepreferencesofthesimilarusersthat havealreadybeenidentified。Auserwhichhasahighcorrelationwithanygroupofusersisknown aswhiteuserwhereastheuserswhichhavelesscorrelationwithanygroupofusersareknownas gray-sheepusers。Thepresenceofgray-sheepusersaffectstheaccuracyofthemodel,andgenerates inaccuratepredictions。Toimprovethepredictionaccuracy,itisimportanttodifferentiategraysheep usersfromwhiteusers。ExperimentalresultsshowthatPowKMeansiseffectiveinimprovingthe predictionaccuracyby4.62%.IthasalsoshownreductioninMeanAbsoluteErrorby0.7757。关键词协同过滤,灰羊用户,k - means++, PowKMeans,推荐系统
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信