Conjugate priors for Gaussian emission plsa recommender systems

Stefan Ingi Adalbjornsson, Johan Sward, Magnus Orn Berg, Søren Vang Andersen, A. Jakobsson
{"title":"Conjugate priors for Gaussian emission plsa recommender systems","authors":"Stefan Ingi Adalbjornsson, Johan Sward, Magnus Orn Berg, Søren Vang Andersen, A. Jakobsson","doi":"10.1109/EUSIPCO.2016.7760618","DOIUrl":null,"url":null,"abstract":"Collaborative filtering for recommender systems seeks to learn and predict user preferences for a collection of items by identifying similarities between users on the basis of their past interest or interaction with the items in question. In this work, we present a conjugate prior regularized extension of Hofmann's Gaussian emission probabilistic latent semantic analysis model, able to overcome the over-fitting problem restricting the performance of the earlier formulation. Furthermore, in experiments using the EachMovie and MovieLens data sets, it is shown that the proposed regularized model achieves significantly improved prediction accuracy of user preferences as compared to the latent semantic analysis model without priors.","PeriodicalId":127068,"journal":{"name":"2016 24th European Signal Processing Conference (EUSIPCO)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 24th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUSIPCO.2016.7760618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Collaborative filtering for recommender systems seeks to learn and predict user preferences for a collection of items by identifying similarities between users on the basis of their past interest or interaction with the items in question. In this work, we present a conjugate prior regularized extension of Hofmann's Gaussian emission probabilistic latent semantic analysis model, able to overcome the over-fitting problem restricting the performance of the earlier formulation. Furthermore, in experiments using the EachMovie and MovieLens data sets, it is shown that the proposed regularized model achieves significantly improved prediction accuracy of user preferences as compared to the latent semantic analysis model without priors.
高斯发射plsa推荐系统的共轭先验
推荐系统的协同过滤旨在通过根据用户过去的兴趣或与相关物品的交互来识别用户之间的相似性,从而学习和预测用户对一系列物品的偏好。在这项工作中,我们提出了Hofmann的高斯发射概率潜在语义分析模型的共轭先验正则化扩展,能够克服限制早期公式性能的过拟合问题。此外,在使用EachMovie和MovieLens数据集的实验中,与没有先验的潜在语义分析模型相比,本文提出的正则化模型对用户偏好的预测精度显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信