Estimation, Specification and Testing in Middle- and Zero-Inflated Ordered Probit Models

Sarah Brown, M. Harris, Christopher Spencer
{"title":"Estimation, Specification and Testing in Middle- and Zero-Inflated Ordered Probit Models","authors":"Sarah Brown, M. Harris, Christopher Spencer","doi":"10.2139/ssrn.3119673","DOIUrl":null,"url":null,"abstract":"Zero-inflated ordered probit (ZIOP) and middle-inflated ordered probit (MIOP) models are finding increasing favour in the discrete choice literature. Both models consist of a mixture of binary and single ordered probit equations, the combination of which accounts for an \"excessive\" build-up of observations in a given choice category. We propose generalisations to these models - which collapse to their ZIOP/MIOP counterparts under a set of simple parameter restrictions - with respect to the inflation process. The appropriateness and implications of our generalisations are demonstrated by using two key empirical applications from the economics and political science literatures. Likelihood ratio (LR) and Lagrange multiplier (LM) specification tests lead us to support the newly proposed generalised models over the ZIOP/MIOP ones, and suggest a role for our generalisations in modelling zero- and middle-inflation processes.","PeriodicalId":165362,"journal":{"name":"ERN: Discrete Regression & Qualitative Choice Models (Single) (Topic)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Discrete Regression & Qualitative Choice Models (Single) (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3119673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Zero-inflated ordered probit (ZIOP) and middle-inflated ordered probit (MIOP) models are finding increasing favour in the discrete choice literature. Both models consist of a mixture of binary and single ordered probit equations, the combination of which accounts for an "excessive" build-up of observations in a given choice category. We propose generalisations to these models - which collapse to their ZIOP/MIOP counterparts under a set of simple parameter restrictions - with respect to the inflation process. The appropriateness and implications of our generalisations are demonstrated by using two key empirical applications from the economics and political science literatures. Likelihood ratio (LR) and Lagrange multiplier (LM) specification tests lead us to support the newly proposed generalised models over the ZIOP/MIOP ones, and suggest a role for our generalisations in modelling zero- and middle-inflation processes.
中间和零膨胀有序 Probit 模型的估计、规范和检验
零膨胀有序概率(ZIOP)和中等膨胀有序概率(MIOP)模型在离散选择文献中越来越受到青睐。这两种模型都由二元和单序概率方程的混合组成,这两种方程的组合解释了在给定的选择类别中观察结果的“过度”积累。我们提出对这些模型的一般化——这些模型在一组简单的参数限制下坍缩为它们的ZIOP/MIOP对应体——关于暴胀过程。通过使用经济学和政治学文献中的两个关键实证应用,证明了我们概括的适当性和含义。似然比(LR)和拉格朗日乘数(LM)规范测试使我们支持新提出的广义模型,而不是ZIOP/MIOP模型,并建议我们的广义模型在模拟零和中等通货膨胀过程中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信