WiderFrame: An Automatic Customization Framework for Building CNN Accelerators on FPGAs: Work-in-Progress

Lei Gong, Chao Wang, Xi Li, Xuehai Zhou
{"title":"WiderFrame: An Automatic Customization Framework for Building CNN Accelerators on FPGAs: Work-in-Progress","authors":"Lei Gong, Chao Wang, Xi Li, Xuehai Zhou","doi":"10.1109/CODESISSS51650.2020.9244024","DOIUrl":null,"url":null,"abstract":"Hardware acceleration based on FPGA has been an important means to improve the computational efficiency of CNNs. However, due to the increasing complexity of the modern CNNs and the diversity of neural computing engines, it is challenging to make full use of FPGAs' customizability for efficient and fast accelerator designs. This paper proposes Wider-Frame, an automatic customization framework for building CNN accelerators on FPGA. Towards fully exploiting the customiz-ability of FPGA for specific computing scenarios, WiderFrame integrates a systematical design space exploration methodology considered with different parallel and data reuse manners among various neural computing engines, a parameterized configurable code template with a set of macro instruction mechanism, for automatically generating the underlying hardware units and the control flow. Evaluation results show that WiderFrame can well support more CNN types, and can improve the performance and the energy efficiency up to 1.25 x and 1.68 x compared with state-of-the-art frameworks.","PeriodicalId":437802,"journal":{"name":"2020 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CODESISSS51650.2020.9244024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Hardware acceleration based on FPGA has been an important means to improve the computational efficiency of CNNs. However, due to the increasing complexity of the modern CNNs and the diversity of neural computing engines, it is challenging to make full use of FPGAs' customizability for efficient and fast accelerator designs. This paper proposes Wider-Frame, an automatic customization framework for building CNN accelerators on FPGA. Towards fully exploiting the customiz-ability of FPGA for specific computing scenarios, WiderFrame integrates a systematical design space exploration methodology considered with different parallel and data reuse manners among various neural computing engines, a parameterized configurable code template with a set of macro instruction mechanism, for automatically generating the underlying hardware units and the control flow. Evaluation results show that WiderFrame can well support more CNN types, and can improve the performance and the energy efficiency up to 1.25 x and 1.68 x compared with state-of-the-art frameworks.
WiderFrame:在fpga上构建CNN加速器的自动定制框架:正在进行的工作
基于FPGA的硬件加速已经成为提高cnn计算效率的重要手段。然而,由于现代cnn的复杂性和神经计算引擎的多样性,充分利用fpga的可定制性来设计高效、快速的加速器是一项挑战。本文提出了一种用于在FPGA上构建CNN加速器的自动定制框架——wide - frame。为了充分利用FPGA对特定计算场景的自定义能力,WiderFrame集成了一种系统的设计空间探索方法,考虑了各种神经计算引擎之间不同的并行和数据重用方式,一种参数化的可配置代码模板和一套宏指令机制,用于自动生成底层硬件单元和控制流程。评估结果表明,WiderFrame可以很好地支持更多的CNN类型,与现有框架相比,其性能和能效分别提高了1.25倍和1.68倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信