A Novel Input Set for LSTM-Based Transport Mode Detection

Güven Aşçı, M. A. Güvensan
{"title":"A Novel Input Set for LSTM-Based Transport Mode Detection","authors":"Güven Aşçı, M. A. Güvensan","doi":"10.1109/PERCOMW.2019.8730799","DOIUrl":null,"url":null,"abstract":"The capability of mobile phones are increasing with the development of hardware and software technology. Especially sensors on smartphones enable to collect environmental and personal information. Thus, with the help of smartphones, human activity recognition and transport mode detection (TMD) become the main research areas in the last decade. This study aims to introduce a novel input set for daily activities mainly for transportation modes in order to increase the detection rate. In this study, the frame-based novel input set consisting of time-domain and frequency-domain features is fed to LSTM network. Thus, the classification ratio on HTC public dataset for 10 different transportation modes is climbed up to 97% which is 2% more than the state-of-the-art method in the literature.","PeriodicalId":437017,"journal":{"name":"2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PERCOMW.2019.8730799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

The capability of mobile phones are increasing with the development of hardware and software technology. Especially sensors on smartphones enable to collect environmental and personal information. Thus, with the help of smartphones, human activity recognition and transport mode detection (TMD) become the main research areas in the last decade. This study aims to introduce a novel input set for daily activities mainly for transportation modes in order to increase the detection rate. In this study, the frame-based novel input set consisting of time-domain and frequency-domain features is fed to LSTM network. Thus, the classification ratio on HTC public dataset for 10 different transportation modes is climbed up to 97% which is 2% more than the state-of-the-art method in the literature.
一种新的基于lstm的传输模式检测输入集
随着硬件和软件技术的发展,手机的功能也在不断增强。特别是智能手机上的传感器可以收集环境和个人信息。因此,在智能手机的帮助下,人体活动识别和运输模式检测(TMD)成为近十年来的主要研究领域。本研究旨在引入一种新颖的日常活动输入集,主要针对交通方式,以提高检测率。在本研究中,将基于帧的由时域和频域特征组成的新输入集馈入LSTM网络。因此,在HTC公共数据集上对10种不同交通方式的分类比率攀升至97%,比文献中最先进的方法高出2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信