Predictive modeling in XML compression

Olli Luoma, J. Teuhola
{"title":"Predictive modeling in XML compression","authors":"Olli Luoma, J. Teuhola","doi":"10.1109/ICDIM.2007.4444283","DOIUrl":null,"url":null,"abstract":"Since its advent, the Extensible Markup Language (XML) has gained tremendous popularity in many different application areas. However, XML data is generally very verbose and redundant, and thus it requires a lot of disk space to store and bandwidth to transfer. To overcome this problem, many methods for compressing XML documents have been proposed. In general, data compression requires a model which is used to predict the next symbol in the data. In this paper, we compare different models suitable for XML compression. We also present a novel modeling method and measure the information content in a set of XML documents using different modeling methods.","PeriodicalId":198626,"journal":{"name":"2007 2nd International Conference on Digital Information Management","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 2nd International Conference on Digital Information Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDIM.2007.4444283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Since its advent, the Extensible Markup Language (XML) has gained tremendous popularity in many different application areas. However, XML data is generally very verbose and redundant, and thus it requires a lot of disk space to store and bandwidth to transfer. To overcome this problem, many methods for compressing XML documents have been proposed. In general, data compression requires a model which is used to predict the next symbol in the data. In this paper, we compare different models suitable for XML compression. We also present a novel modeling method and measure the information content in a set of XML documents using different modeling methods.
XML压缩中的预测建模
自出现以来,可扩展标记语言(XML)在许多不同的应用程序领域获得了极大的普及。但是,XML数据通常非常冗长和冗余,因此需要大量的磁盘空间来存储和带宽来传输。为了克服这个问题,已经提出了许多压缩XML文档的方法。一般来说,数据压缩需要一个模型来预测数据中的下一个符号。在本文中,我们比较了适用于XML压缩的不同模型。我们还提出了一种新的建模方法,并使用不同的建模方法度量一组XML文档中的信息内容。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信