Applying multi-agent approach to mixed-model assembly line balancing

L. Liao, C. J. Huang, J. H. Huang
{"title":"Applying multi-agent approach to mixed-model assembly line balancing","authors":"L. Liao, C. J. Huang, J. H. Huang","doi":"10.1109/ICMIT.2012.6225889","DOIUrl":null,"url":null,"abstract":"This paper develops a decentralized approach using multi-agent based framework to solve the mixed-model assembly line problem. A three-level multi-agent system is proposed. Tabu search technique is applied in the line balancing process. A modified ranked positional weight is developed and used to produce the initial solution. And a restricted neighborhood strategy is proposed to flexibly adjust the workloads of all machines. Two criteria are simultaneously considered for optimization: to minimize the number of workstation for a given cycle time, and to maximize the workload smoothing.","PeriodicalId":292290,"journal":{"name":"2012 IEEE International Conference on Management of Innovation & Technology (ICMIT)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Management of Innovation & Technology (ICMIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMIT.2012.6225889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper develops a decentralized approach using multi-agent based framework to solve the mixed-model assembly line problem. A three-level multi-agent system is proposed. Tabu search technique is applied in the line balancing process. A modified ranked positional weight is developed and used to produce the initial solution. And a restricted neighborhood strategy is proposed to flexibly adjust the workloads of all machines. Two criteria are simultaneously considered for optimization: to minimize the number of workstation for a given cycle time, and to maximize the workload smoothing.
多智能体方法在混合模型装配线平衡中的应用
本文提出了一种基于多智能体框架的分散方法来解决混合模型装配线问题。提出了一个三级多智能体系统。在线路平衡过程中应用禁忌搜索技术。提出了一种改进的排序位置权值,并将其用于生成初始解。提出了一种限制邻域策略来灵活调整所有机器的工作负载。优化同时考虑两个标准:在给定周期时间内最小化工作站数量,并最大化工作负载平滑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信