An integrated approach for the voltage stability enhancement of large wind integrated power systems

B. Maya, S. Sreedharan, J. G. Singh
{"title":"An integrated approach for the voltage stability enhancement of large wind integrated power systems","authors":"B. Maya, S. Sreedharan, J. G. Singh","doi":"10.1109/EPSCICON.2012.6175234","DOIUrl":null,"url":null,"abstract":"This paper investigates the applicability of an integrated approach for the enhancement of voltage stability margin and there by the wind penetration of large wind integrated power systems. The proposed approach involves in two objectives; the identification of weak buses in the given power systems, enhancement of voltage stability margin of the weak buses and there by the wind penetration by optimal placement and tuning of Flexible AC Transmission System (FACTS) controllers. Multiple of one type of FACTS controller namely SVC is used in the current analysis for placement in suitable weak buses. Weak bus identification is carried out by conducting the tangent vector analysis. Voltage stability enhancement at high wind penetration is assessed by using the dynamic voltage security index, the index for accessing the proximity of voltage collapse under dynamic loading conditions. The optimization of grid control parameters are carried out by using Particle Swarm Optimization (PSO) by incorporating FACTS Controllers. The developed algorithm have been tested on Wind integrated Kerala grid 25-bus practical system.","PeriodicalId":143947,"journal":{"name":"2012 International Conference on Power, Signals, Controls and Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Power, Signals, Controls and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPSCICON.2012.6175234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper investigates the applicability of an integrated approach for the enhancement of voltage stability margin and there by the wind penetration of large wind integrated power systems. The proposed approach involves in two objectives; the identification of weak buses in the given power systems, enhancement of voltage stability margin of the weak buses and there by the wind penetration by optimal placement and tuning of Flexible AC Transmission System (FACTS) controllers. Multiple of one type of FACTS controller namely SVC is used in the current analysis for placement in suitable weak buses. Weak bus identification is carried out by conducting the tangent vector analysis. Voltage stability enhancement at high wind penetration is assessed by using the dynamic voltage security index, the index for accessing the proximity of voltage collapse under dynamic loading conditions. The optimization of grid control parameters are carried out by using Particle Swarm Optimization (PSO) by incorporating FACTS Controllers. The developed algorithm have been tested on Wind integrated Kerala grid 25-bus practical system.
提高大型风力发电系统电压稳定性的综合方法
本文研究了一种综合方法在提高大型风力发电系统的电压稳定裕度和电压稳定裕度方面的适用性。拟议的办法涉及两个目标;在给定的电力系统中识别弱母线,通过柔性交流输电系统(FACTS)控制器的优化配置和调整,增强弱母线的电压稳定裕度,并通过风穿透增强弱母线的电压稳定裕度。在电流分析中,一种类型的FACTS控制器即SVC的倍数被用于放置在合适的弱母线上。弱母线识别是通过切矢量分析来实现的。采用动态电压安全指数(动态加载条件下电压崩溃接近度的指标)来评价高风侵度下电压稳定性的增强。采用粒子群算法结合FACTS控制器对网格控制参数进行优化。所开发的算法已在喀拉拉邦风力集成电网25总线实际系统上进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信