Robust vision-based detection and grasping object for manipulator using SIFT keypoint detector

W. Budiharto
{"title":"Robust vision-based detection and grasping object for manipulator using SIFT keypoint detector","authors":"W. Budiharto","doi":"10.1109/ICAMECHS.2014.6911587","DOIUrl":null,"url":null,"abstract":"The ability for a manipulator to detect and grasp an object accurately and fast is very important. Vision-based manipulator using stereo vision is proposed in this paper in order able to detect and grasp an object in a good manner. We propose a framework, fast algorithm for object detection using SIFT(Scale Invariant Features Transform) keypoint detector and FLANN (Fast Library for Approximate Nearest Neighbor) based matcher. Stereo vision is used in order the system knows the position (pose estimation) of the object. Bayesian filtering implemented in order to reduce noise from camera and robust tracking. Experimental result presented and we analyze the result.","PeriodicalId":422387,"journal":{"name":"Proceedings of the 2014 International Conference on Advanced Mechatronic Systems","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 International Conference on Advanced Mechatronic Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAMECHS.2014.6911587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The ability for a manipulator to detect and grasp an object accurately and fast is very important. Vision-based manipulator using stereo vision is proposed in this paper in order able to detect and grasp an object in a good manner. We propose a framework, fast algorithm for object detection using SIFT(Scale Invariant Features Transform) keypoint detector and FLANN (Fast Library for Approximate Nearest Neighbor) based matcher. Stereo vision is used in order the system knows the position (pose estimation) of the object. Bayesian filtering implemented in order to reduce noise from camera and robust tracking. Experimental result presented and we analyze the result.
基于SIFT关键点检测器的机械臂鲁棒检测与抓取
机械臂准确、快速地检测和抓取物体的能力是非常重要的。为了更好地检测和抓取物体,本文提出了一种利用立体视觉的基于视觉的机械手。提出了一种基于SIFT(Scale Invariant Features Transform)关键点检测器和FLANN (fast Library for Approximate Nearest Neighbor)匹配器的框架快速目标检测算法。使用立体视觉是为了让系统知道物体的位置(姿态估计)。实现贝叶斯滤波,以减少来自摄像机的噪声和鲁棒跟踪。给出了实验结果,并对结果进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信