Symbolic implication in test generation

S. Kundu, I. Nair, L. Huisman, V. Iyengar
{"title":"Symbolic implication in test generation","authors":"S. Kundu, I. Nair, L. Huisman, V. Iyengar","doi":"10.1109/EDAC.1991.206456","DOIUrl":null,"url":null,"abstract":"All test generation algorithms make use of symbolic algebra. The symbolic value that most test generators use is 'X', to denote the unknown/do not care logic value. The other end of the spectrum is to shade each X differently to fully exploit the information contained in them. This is impractical due to combinatorial explosion that results from such coloring. In this paper, the authors explore use of limited symbolic evaluation in test generation. This symbolic evaluation greatly improves test generation compared with the usual five-valued simulation. Also, and in contrast with other established techniques in test pattern generation such as static learning and dynamic learning, it requires no preprocessing and almost no additional memory.<<ETX>>","PeriodicalId":425087,"journal":{"name":"Proceedings of the European Conference on Design Automation.","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the European Conference on Design Automation.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDAC.1991.206456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

All test generation algorithms make use of symbolic algebra. The symbolic value that most test generators use is 'X', to denote the unknown/do not care logic value. The other end of the spectrum is to shade each X differently to fully exploit the information contained in them. This is impractical due to combinatorial explosion that results from such coloring. In this paper, the authors explore use of limited symbolic evaluation in test generation. This symbolic evaluation greatly improves test generation compared with the usual five-valued simulation. Also, and in contrast with other established techniques in test pattern generation such as static learning and dynamic learning, it requires no preprocessing and almost no additional memory.<>
测试生成中的符号含义
所有的测试生成算法都使用符号代数。大多数测试生成器使用的符号值是'X',表示未知/不关心的逻辑值。另一个极端是用不同的方式遮蔽每个X,以充分利用其中包含的信息。这是不切实际的,因为这种着色会导致组合爆炸。本文探讨了有限符号求值在测试生成中的应用。与通常的五值模拟相比,这种符号计算大大改进了测试生成。此外,与静态学习和动态学习等测试模式生成中其他已建立的技术相比,它不需要预处理,也几乎不需要额外的内存。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信