Predicting logistics delivery demand with deep neural networks

Yao-San Lin, Yaofeng Zhang, I. Lin, Che-Jung Chang
{"title":"Predicting logistics delivery demand with deep neural networks","authors":"Yao-San Lin, Yaofeng Zhang, I. Lin, Che-Jung Chang","doi":"10.1109/ICITM.2018.8333964","DOIUrl":null,"url":null,"abstract":"Delivery time affects the logistics route, depending on the needs of the place and quantity. An efficient prediction of delivery demand would help the construction of logistics model. The data on delivery demand are time-dependency and space-correlation. Modeling the multidimensional sequence or making the prediction based on it would be a computation consuming work. Our research is based on deep learning to propose an efficient procedure to predict delivery demand. With the simulation study, the prediction performance of the proposed procedure is acceptable. This is conducive to the further study of logistics decisions making.","PeriodicalId":341512,"journal":{"name":"2018 7th International Conference on Industrial Technology and Management (ICITM)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th International Conference on Industrial Technology and Management (ICITM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITM.2018.8333964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Delivery time affects the logistics route, depending on the needs of the place and quantity. An efficient prediction of delivery demand would help the construction of logistics model. The data on delivery demand are time-dependency and space-correlation. Modeling the multidimensional sequence or making the prediction based on it would be a computation consuming work. Our research is based on deep learning to propose an efficient procedure to predict delivery demand. With the simulation study, the prediction performance of the proposed procedure is acceptable. This is conducive to the further study of logistics decisions making.
基于深度神经网络的物流配送需求预测
交货时间影响物流路线,取决于地点和数量的需要。有效的配送需求预测有助于物流模型的构建。配送需求数据具有时间依赖性和空间相关性。对多维序列进行建模或基于它进行预测将是一项消耗计算量的工作。我们的研究是基于深度学习提出一个有效的过程来预测交付需求。通过仿真研究,该方法的预测性能是可以接受的。这有利于物流决策的进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信