A comparison of two different tracking algorithms is provided for real application

L. Lamard, R. Chapuis, Jean-Philippe Boyer
{"title":"A comparison of two different tracking algorithms is provided for real application","authors":"L. Lamard, R. Chapuis, Jean-Philippe Boyer","doi":"10.1109/IVS.2012.6232173","DOIUrl":null,"url":null,"abstract":"The Multiple Hypothesis Tracker (MHT) and the Cardinalized Probability Hypothesis Density (CPHD) are two algorithms which can overcome the Multi-Targets Tracking (MTT) issues in automotive applications. This paper describes the performance of such algorithms and, in particular the Gaussian Mixture Probability Hypothesis Density (GMPHD) filter and the Track Oriented Multiple Hypothesis Tracker (TOMHT) for multiple cars and humans tracking in real road context. The scenario under consideration is the tracking an unknown number of real targets (humans and vehicles), using real measurements from an intelligent camera and a radar. The estimation of the number of targets and the target states of each filter will allow us to draw conclusion regarding the behavior of TOMHT and GMCPHD in real road context.","PeriodicalId":402389,"journal":{"name":"2012 IEEE Intelligent Vehicles Symposium","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Intelligent Vehicles Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2012.6232173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The Multiple Hypothesis Tracker (MHT) and the Cardinalized Probability Hypothesis Density (CPHD) are two algorithms which can overcome the Multi-Targets Tracking (MTT) issues in automotive applications. This paper describes the performance of such algorithms and, in particular the Gaussian Mixture Probability Hypothesis Density (GMPHD) filter and the Track Oriented Multiple Hypothesis Tracker (TOMHT) for multiple cars and humans tracking in real road context. The scenario under consideration is the tracking an unknown number of real targets (humans and vehicles), using real measurements from an intelligent camera and a radar. The estimation of the number of targets and the target states of each filter will allow us to draw conclusion regarding the behavior of TOMHT and GMCPHD in real road context.
为实际应用提供了两种不同跟踪算法的比较
多假设跟踪器(MHT)和基数化概率假设密度(CPHD)算法是解决汽车多目标跟踪问题的两种算法。本文描述了这些算法的性能,特别是高斯混合概率假设密度(GMPHD)滤波器和轨迹导向多重假设跟踪器(TOMHT),用于在真实道路环境中进行多车多人跟踪。正在考虑的方案是跟踪未知数量的真实目标(人和车辆),使用来自智能摄像机和雷达的真实测量。对每个滤波器的目标数量和目标状态的估计将使我们能够得出关于TOMHT和GMCPHD在真实道路环境中的行为的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信