Optimum mixture estimator for single-channel speech separation

Pejman Mowlaee, A. Sayadiyan, M. Sheikhan
{"title":"Optimum mixture estimator for single-channel speech separation","authors":"Pejman Mowlaee, A. Sayadiyan, M. Sheikhan","doi":"10.1109/ISTEL.2008.4651361","DOIUrl":null,"url":null,"abstract":"In this paper, we present proofs for optimum mixture estimator for mixture estimator for single-channel speech separation (SSCS) problem. We demonstrate that by replacing the proposed optimum estimator with mixture-maximization (Mixmax) or Quadratic estimators, it is possible to reach at a lower estimation error while separating mixture of speech signals. In addition, the proposed estimator results in less cross-talk as well as higher perceptual quality in the separated speech signals. Compared to other estimators including Mixmax, the proposed method attains these merits without using non-linear mapping used in Mixmax i.e. taking log and inverse-log. Experimental results on real speech data also confirm the superiority of the proposed estimator to others in Mean Square Error (MSE) sense.","PeriodicalId":133602,"journal":{"name":"2008 International Symposium on Telecommunications","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Symposium on Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISTEL.2008.4651361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this paper, we present proofs for optimum mixture estimator for mixture estimator for single-channel speech separation (SSCS) problem. We demonstrate that by replacing the proposed optimum estimator with mixture-maximization (Mixmax) or Quadratic estimators, it is possible to reach at a lower estimation error while separating mixture of speech signals. In addition, the proposed estimator results in less cross-talk as well as higher perceptual quality in the separated speech signals. Compared to other estimators including Mixmax, the proposed method attains these merits without using non-linear mapping used in Mixmax i.e. taking log and inverse-log. Experimental results on real speech data also confirm the superiority of the proposed estimator to others in Mean Square Error (MSE) sense.
单通道语音分离的最优混合估计器
本文给出了单通道语音分离(SSCS)问题中混合估计器的最佳混合估计器的证明。我们证明,通过用混合最大化(Mixmax)或二次估计器取代所提出的最优估计器,可以在分离混合语音信号时达到更低的估计误差。此外,该估计器在分离后的语音信号中减少了串扰,提高了感知质量。与Mixmax等其他估计器相比,该方法无需使用Mixmax中使用的非线性映射(即取对数和逆对数)即可实现这些优点。在真实语音数据上的实验结果也证实了该估计器在均方误差(MSE)意义上的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信