An unconditionally-stable FDTD method based on split-step scheme for solving three-dimensional maxwell equations

Yong-Dan Kong, Q. Chu
{"title":"An unconditionally-stable FDTD method based on split-step scheme for solving three-dimensional maxwell equations","authors":"Yong-Dan Kong, Q. Chu","doi":"10.1109/ICMMT.2008.4540338","DOIUrl":null,"url":null,"abstract":"A new split-step finite-difference time-domain (FDTD) method for solving three-dimensional Maxwell's equations is presented, which is proven to be unconditionally-stable and has simpler procedure formulation than the operator splitting (OS) FDTD method based on exponential evolution operator scheme. The proposed method has the new splitting forms along the x, y and z coordinate directions to reduce computational complexity and the second-order accuracy in both time and space. In the application of a cavity, the proposed method produces 35% reduction of the run time than the split-step (SS)-FDTD (2, 2) method.","PeriodicalId":315133,"journal":{"name":"2008 International Conference on Microwave and Millimeter Wave Technology","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Microwave and Millimeter Wave Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMMT.2008.4540338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

A new split-step finite-difference time-domain (FDTD) method for solving three-dimensional Maxwell's equations is presented, which is proven to be unconditionally-stable and has simpler procedure formulation than the operator splitting (OS) FDTD method based on exponential evolution operator scheme. The proposed method has the new splitting forms along the x, y and z coordinate directions to reduce computational complexity and the second-order accuracy in both time and space. In the application of a cavity, the proposed method produces 35% reduction of the run time than the split-step (SS)-FDTD (2, 2) method.
基于分步格式的无条件稳定时域有限差分法求解三维麦克斯韦方程组
提出了一种新的求解三维麦克斯韦方程组的分步时域有限差分(FDTD)方法,证明了该方法具有无条件稳定性,并且比基于指数演化算子格式的算子分裂(OS) FDTD方法具有更简单的过程表达式。该方法采用了新的沿x、y和z坐标方向的分割形式,降低了计算复杂度和时间和空间上的二阶精度。在腔体的应用中,该方法比分步(SS)-FDTD(2,2)方法的运行时间缩短了35%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信