Circuit Partitioning optimization using Parallel refinement algorithm

S. Nayak, Satyasen Panda, M. Panda
{"title":"Circuit Partitioning optimization using Parallel refinement algorithm","authors":"S. Nayak, Satyasen Panda, M. Panda","doi":"10.1109/AESPC44649.2018.9033291","DOIUrl":null,"url":null,"abstract":"Circuit partitioning is a major step in workload distribution for parallel computing system and CMOS VLSI circuit design. Circuit partitioning involves graph partitioning for effective utilization of available CPU power in case of higher number of cores per processor. It improves the degree of partition and amount of parallelism requirement of the partition. In this paper, we propose a shared memory parallel double way method of refinement of current partitioning which can break the local minima. The proposed method shows superiority in comparison to exiting serial refinement methods and achieves speed up of 1.2× to 24.5×24threads while revealing only .37% higher edge cuts in comparison to serial run.","PeriodicalId":222759,"journal":{"name":"2018 International Conference on Applied Electromagnetics, Signal Processing and Communication (AESPC)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Applied Electromagnetics, Signal Processing and Communication (AESPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AESPC44649.2018.9033291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Circuit partitioning is a major step in workload distribution for parallel computing system and CMOS VLSI circuit design. Circuit partitioning involves graph partitioning for effective utilization of available CPU power in case of higher number of cores per processor. It improves the degree of partition and amount of parallelism requirement of the partition. In this paper, we propose a shared memory parallel double way method of refinement of current partitioning which can break the local minima. The proposed method shows superiority in comparison to exiting serial refinement methods and achieves speed up of 1.2× to 24.5×24threads while revealing only .37% higher edge cuts in comparison to serial run.
基于并行优化算法的电路划分优化
电路划分是并行计算系统和CMOS VLSI电路设计中工作负载分配的重要步骤。电路分区涉及图分区,以便在每个处理器的核数较高的情况下有效利用可用的CPU功率。它提高了分区的程度和分区的并行性要求。本文提出了一种可打破局部极小值的共享内存并行双路优化方法。与现有的串行优化方法相比,该方法显示出优越性,达到了1.2倍的24.5×24threads速度,而与串行运行相比,仅显示出0.37%的高边缘切割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信