Qrd-based Square Root Free And Division Free Algorithms And Architectures

K. Liu, E. Frantzeskakis
{"title":"Qrd-based Square Root Free And Division Free Algorithms And Architectures","authors":"K. Liu, E. Frantzeskakis","doi":"10.1109/VLSISP.1992.641077","DOIUrl":null,"url":null,"abstract":"We introduce a family of square root free and division free rotation based algorithms. Our approach suggests a new perspective of the Q R decomposition (QRD) algorithms and leads to a considerable reduction of the circuitry complexity and time delay in the associated architectures. The optimal residual and the optimal weight ext:raction for the recursive least squares (RLS) problem are considered in this paper. The systolic structures that are described are very promising, since they involve less computational complexity from the structures known to date and they make the VLSI implementation more tractable.","PeriodicalId":210565,"journal":{"name":"Workshop on VLSI Signal Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on VLSI Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSISP.1992.641077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We introduce a family of square root free and division free rotation based algorithms. Our approach suggests a new perspective of the Q R decomposition (QRD) algorithms and leads to a considerable reduction of the circuitry complexity and time delay in the associated architectures. The optimal residual and the optimal weight ext:raction for the recursive least squares (RLS) problem are considered in this paper. The systolic structures that are described are very promising, since they involve less computational complexity from the structures known to date and they make the VLSI implementation more tractable.
基于qrd的无平方根和无除法算法和架构
我们介绍了一组基于平方根自由和除法自由旋转的算法。我们的方法提出了qr分解(QRD)算法的新视角,并导致相关体系结构中电路复杂性和时间延迟的显著降低。研究了递推最小二乘问题的最优残差和最优权系数。所描述的收缩结构非常有前途,因为它们涉及的计算复杂性比迄今为止已知的结构要少,并且它们使VLSI的实现更容易处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信