{"title":"The effect of nogood learning in distributed constraint satisfaction","authors":"M. Yokoo, K. Hirayama","doi":"10.1109/ICDCS.2000.840919","DOIUrl":null,"url":null,"abstract":"We present resolvent-based learning as a new nogood learning method for a distributed constraint satisfaction algorithm. This method is based on a look-back technique in constraint satisfaction algorithms and can efficiently make effective nogoods. We combine the method with the asynchronous weak-commitment search algorithm (AWC) and evaluate the performance of the resultant algorithm on distributed 3-coloring problems and distributed 3SAT problems. As a result, we found that the resolvent-based learning works well compared to previous learning methods for distributed constraint satisfaction algorithms. We also found that the AWC with the resolvent-based learning is able to find a solution with fewer cycles than the distributed breakout algorithm, which was known to be the most efficient algorithm (in terms of cycles) for solving distributed constraint satisfaction problems.","PeriodicalId":284992,"journal":{"name":"Proceedings 20th IEEE International Conference on Distributed Computing Systems","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 20th IEEE International Conference on Distributed Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS.2000.840919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52
Abstract
We present resolvent-based learning as a new nogood learning method for a distributed constraint satisfaction algorithm. This method is based on a look-back technique in constraint satisfaction algorithms and can efficiently make effective nogoods. We combine the method with the asynchronous weak-commitment search algorithm (AWC) and evaluate the performance of the resultant algorithm on distributed 3-coloring problems and distributed 3SAT problems. As a result, we found that the resolvent-based learning works well compared to previous learning methods for distributed constraint satisfaction algorithms. We also found that the AWC with the resolvent-based learning is able to find a solution with fewer cycles than the distributed breakout algorithm, which was known to be the most efficient algorithm (in terms of cycles) for solving distributed constraint satisfaction problems.