On Solving Problems of Thermal Conductivity on an Anisotropic Plane with a Weakly Permeable Film

Kholodovskii Svyatoslav Ye., Orlov Aleksey O.
{"title":"On Solving Problems of Thermal Conductivity on an Anisotropic Plane with a Weakly Permeable Film","authors":"Kholodovskii Svyatoslav Ye., Orlov Aleksey O.","doi":"10.21209/2658-7114-2021-16-3-115-121","DOIUrl":null,"url":null,"abstract":"The problem of thermal conductivity on an anisotropic plane (x; y) divided into two halfplanes D1(1 < x < 0; y 2 R) and D2(0 < x < 1; y 2 R) by a weakly permeable film x = 0 is considered at given heat sources and a given initial temperature. The anisotropy ellipses are arbitrary (in magnitude and direction) and are the same at all points of the plane. Using the method of convolution of Fourier expansions, the solution of the problem is expressed in single quadratures through the well-known solution of the classical Cauchy problem on an isotropic plane without a film. The results obtained are of practical interest in the problems of heat propagation and conservation in materials with anisotropic properties (crystalline, fibrous materials), in the presence of a thermal insulation film.","PeriodicalId":335901,"journal":{"name":"Scholarly Notes of Transbaikal State University","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scholarly Notes of Transbaikal State University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21209/2658-7114-2021-16-3-115-121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The problem of thermal conductivity on an anisotropic plane (x; y) divided into two halfplanes D1(1 < x < 0; y 2 R) and D2(0 < x < 1; y 2 R) by a weakly permeable film x = 0 is considered at given heat sources and a given initial temperature. The anisotropy ellipses are arbitrary (in magnitude and direction) and are the same at all points of the plane. Using the method of convolution of Fourier expansions, the solution of the problem is expressed in single quadratures through the well-known solution of the classical Cauchy problem on an isotropic plane without a film. The results obtained are of practical interest in the problems of heat propagation and conservation in materials with anisotropic properties (crystalline, fibrous materials), in the presence of a thermal insulation film.
求解具有弱渗透膜的各向异性平面上的热导率问题
各向异性平面上的热导率问题(x;y)分为两个半平面D1(1 < x < 0;y 2r)和D2(0 < x < 1;在给定的热源和给定的初始温度下,考虑弱渗透膜x = 0对y 2r的影响。各向异性椭圆是任意的(大小和方向),并且在平面的所有点上都是相同的。利用傅里叶展开的卷积方法,通过在无膜各向同性平面上著名的经典柯西问题的解,将问题的解表示为单正交。所得结果对具有各向异性的材料(晶体、纤维材料)在存在隔热膜的情况下的热传播和守恒问题具有实际意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信