Building multimodule systems with unlimited evolvable capacities from modules with limited evolvable capacities (MECs)

H. D. Garis, A. Buller, Thierry Dob, Jean-Christophe Honlet, Padma Guttikonda, Derek Decesare
{"title":"Building multimodule systems with unlimited evolvable capacities from modules with limited evolvable capacities (MECs)","authors":"H. D. Garis, A. Buller, Thierry Dob, Jean-Christophe Honlet, Padma Guttikonda, Derek Decesare","doi":"10.1109/EH.2000.869360","DOIUrl":null,"url":null,"abstract":"This paper introduces a concept which we believe will play a fundamental role in the growing field of \"evolutionary engineering\", namely the idea that there are limits to what can be evolved using a finite number of bits in a chromosome. For example, if one tries to evolve a neural network circuit module to give a time varying analog output signal which tracks an analog output time varying target signal, then the actual evolved output curve will follow the target curve quite well for a certain time period, then diverge. If one puts more bits into the chromosome used to evolve the signal, then The evolved signal will track the target signal for longer, but again will eventually diverge. Hence there is a finite \"evolvable capacity\" for a module evolved with a given number of bits. We label this concept \"modular evolvable capacity\" or simply MEC. MECs are important when one attempts to assemble large numbers of evolved modules to build such systems as artificial brains. STARLAB will attempt to use its CAM-Brain Machine (CBM) to evolve and assemble 64000 such modules to build an artificial brain. The fact that each module has its MEC, places constraints upon what \"evolutionary engineers (EEs)\", or in this case \"brain architects (BAs)\" can do. Such limits are unavoidable and have a fundamental practical impact on the daily work of EEs and BAs. This paper aims to show how multimodule systems with effectively unlimited evolvable capacities may be buildable using modules with limited MECs.","PeriodicalId":432338,"journal":{"name":"Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EH.2000.869360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper introduces a concept which we believe will play a fundamental role in the growing field of "evolutionary engineering", namely the idea that there are limits to what can be evolved using a finite number of bits in a chromosome. For example, if one tries to evolve a neural network circuit module to give a time varying analog output signal which tracks an analog output time varying target signal, then the actual evolved output curve will follow the target curve quite well for a certain time period, then diverge. If one puts more bits into the chromosome used to evolve the signal, then The evolved signal will track the target signal for longer, but again will eventually diverge. Hence there is a finite "evolvable capacity" for a module evolved with a given number of bits. We label this concept "modular evolvable capacity" or simply MEC. MECs are important when one attempts to assemble large numbers of evolved modules to build such systems as artificial brains. STARLAB will attempt to use its CAM-Brain Machine (CBM) to evolve and assemble 64000 such modules to build an artificial brain. The fact that each module has its MEC, places constraints upon what "evolutionary engineers (EEs)", or in this case "brain architects (BAs)" can do. Such limits are unavoidable and have a fundamental practical impact on the daily work of EEs and BAs. This paper aims to show how multimodule systems with effectively unlimited evolvable capacities may be buildable using modules with limited MECs.
从具有有限进化能力的模块(MECs)中构建具有无限进化能力的多模块系统
本文介绍了一个概念,我们相信这个概念将在不断发展的“进化工程”领域中发挥重要作用,即利用染色体中有限的比特来进化的东西是有限的。例如,如果试图进化一个神经网络电路模块,以给出一个时变模拟输出信号,该信号跟踪模拟输出时变目标信号,那么实际进化的输出曲线将在一定时间内很好地跟随目标曲线,然后发散。如果一个人把更多的比特放入用于进化信号的染色体中,那么进化的信号就会追踪目标信号更长时间,但最终还是会分化。因此,对于一个给定比特数的模块来说,“可进化能力”是有限的。我们将这个概念称为“模块化可进化能力”或简称为MEC。当人们试图组装大量进化模块来构建人工大脑等系统时,mec非常重要。STARLAB将尝试使用其CAM-Brain Machine (CBM)来进化和组装64000个这样的模块来构建一个人工大脑。事实上,每个模块都有自己的MEC,这就限制了“进化工程师”(EEs),或者在这种情况下“大脑架构师”(BAs)所能做的事情。这些限制是不可避免的,并且对环境评估师和审计师的日常工作产生了根本性的实际影响。本文旨在展示如何使用具有有限mec的模块构建具有有效无限可进化能力的多模块系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信