CNN cell with memcapacitive synapses and threshold control circuit

J. Flak
{"title":"CNN cell with memcapacitive synapses and threshold control circuit","authors":"J. Flak","doi":"10.1109/CNNA.2012.6331414","DOIUrl":null,"url":null,"abstract":"This paper presents a concept of a solid-state memcapacitor based on a combination of memristor and capacitor, as well as its applications to cellular nanoscale networks. In addition to ultra-dense memories, memcapacitors can also be used for synaptic connections and threshold control in arrays with capacitively coupled processing units. In principle, the proposed CNN cell structure implements the basic McCulloch-Pitts neuron model. Although the cell relies on the binary programmability scheme with single-bit template coefficients, the proposed memcapacitive synapses allow for asynchronous processing of tasks, for which the traditional cloning templates contain both positive and negative values.","PeriodicalId":387536,"journal":{"name":"2012 13th International Workshop on Cellular Nanoscale Networks and their Applications","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 13th International Workshop on Cellular Nanoscale Networks and their Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.2012.6331414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents a concept of a solid-state memcapacitor based on a combination of memristor and capacitor, as well as its applications to cellular nanoscale networks. In addition to ultra-dense memories, memcapacitors can also be used for synaptic connections and threshold control in arrays with capacitively coupled processing units. In principle, the proposed CNN cell structure implements the basic McCulloch-Pitts neuron model. Although the cell relies on the binary programmability scheme with single-bit template coefficients, the proposed memcapacitive synapses allow for asynchronous processing of tasks, for which the traditional cloning templates contain both positive and negative values.
具有记忆电容突触和阈值控制电路的CNN细胞
本文提出了一种基于忆阻器和电容相结合的固态记忆电容的概念,以及其在细胞纳米网络中的应用。除了超密集存储器,memcapacitors也可用于突触连接和阈值控制与电容耦合处理单元阵列。原则上,本文提出的CNN细胞结构实现了基本的McCulloch-Pitts神经元模型。尽管细胞依赖于具有单位模板系数的二进制可编程性方案,但所提出的记忆电容突触允许异步处理任务,而传统的克隆模板包含正负值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信