Recommending Solution Paths for Solving Optimization Problems with Quantum Computing

Benedikt Poggel, Nils Quetschlich, Lukas Burgholzer, R. Wille, J. Lorenz
{"title":"Recommending Solution Paths for Solving Optimization Problems with Quantum Computing","authors":"Benedikt Poggel, Nils Quetschlich, Lukas Burgholzer, R. Wille, J. Lorenz","doi":"10.1109/QSW59989.2023.00017","DOIUrl":null,"url":null,"abstract":"Solving real-world optimization problems with quantum computing requires choosing between a large number of options concerning formulation, encoding, algorithm and hardware. Finding good solution paths is challenging for end users and researchers alike. We propose a framework designed to identify and recommend the best-suited solution paths in an automated way. This introduces a novel abstraction layer that is required to make quantum-computing-assisted solution techniques accessible to end users without requiring a deeper knowledge of quantum technologies. State-of-the-art hybrid algorithms, encoding and decomposition techniques can be integrated in a modular manner and evaluated using problem-specific performance metrics. Equally, tools for the graphical analysis of variational quantum algorithms are developed. Classical, fault tolerant quantum and quantum-inspired methods can be included as well to ensure a fair comparison resulting in useful solution paths. We demonstrate and validate our approach on a selected set of options and illustrate its application on the capacitated vehicle routing problem (CVRP). We also identify crucial requirements and the major design challenges for the proposed abstraction layer within a quantum-assisted solution workflow for optimization problems.","PeriodicalId":254476,"journal":{"name":"2023 IEEE International Conference on Quantum Software (QSW)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Quantum Software (QSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QSW59989.2023.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Solving real-world optimization problems with quantum computing requires choosing between a large number of options concerning formulation, encoding, algorithm and hardware. Finding good solution paths is challenging for end users and researchers alike. We propose a framework designed to identify and recommend the best-suited solution paths in an automated way. This introduces a novel abstraction layer that is required to make quantum-computing-assisted solution techniques accessible to end users without requiring a deeper knowledge of quantum technologies. State-of-the-art hybrid algorithms, encoding and decomposition techniques can be integrated in a modular manner and evaluated using problem-specific performance metrics. Equally, tools for the graphical analysis of variational quantum algorithms are developed. Classical, fault tolerant quantum and quantum-inspired methods can be included as well to ensure a fair comparison resulting in useful solution paths. We demonstrate and validate our approach on a selected set of options and illustrate its application on the capacitated vehicle routing problem (CVRP). We also identify crucial requirements and the major design challenges for the proposed abstraction layer within a quantum-assisted solution workflow for optimization problems.
推荐用量子计算解决优化问题的解决路径
用量子计算解决现实世界的优化问题需要在大量关于公式、编码、算法和硬件的选项之间进行选择。找到好的解决方案路径对最终用户和研究人员来说都是一个挑战。我们提出了一个框架,旨在以自动化的方式识别和推荐最适合的解决方案路径。这就引入了一个新的抽象层,终端用户无需深入了解量子技术,就可以使用量子计算辅助解决方案技术。最先进的混合算法、编码和分解技术可以以模块化的方式集成,并使用特定于问题的性能指标进行评估。同样,变分量子算法的图形分析工具也被开发出来。经典的、容错的量子和量子启发的方法也可以包括在内,以确保公平的比较,从而产生有用的解路径。我们在一组选定的选项上演示和验证了我们的方法,并说明了它在有能力车辆路线问题(CVRP)上的应用。我们还确定了在优化问题的量子辅助解决方案工作流中提出的抽象层的关键需求和主要设计挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信