Classification Supervisée de Questions : Rôle de l'Expansion Sémantique

A. Harb, J. Girardot, M. Beigbeder
{"title":"Classification Supervisée de Questions : Rôle de l'Expansion Sémantique","authors":"A. Harb, J. Girardot, M. Beigbeder","doi":"10.24348/coria.2010.147","DOIUrl":null,"url":null,"abstract":"Responding correctly to a question given a large collection of textual data is not an easy task. There is a need to perceive and recognize the question at a level that permits to detect some constraints that the question imposes on possible answers. The question classification task is used in Question Answering systems. This deduces the type of the expected answer, to perform a semantic classification to the target answer. The purpose is to provide additional information to reduce the gap between answer and question. An approach to improve the effectiveness of classifiers focusing on linguistic analysis and statistical approaches. This work also proposes two methods of questions expansion. Various questions representation, term weighting and diverse machine learning algorithms are studied. Experiments conducted on actual data are presented. Of interest is the improvement in the precision on the classification of questions. MOTS-CLES : Classification, Selections des descripteurs, Expansion semantique, Apprentissage, Fouille de texte.","PeriodicalId":390974,"journal":{"name":"Conférence en Recherche d'Infomations et Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conférence en Recherche d'Infomations et Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24348/coria.2010.147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Responding correctly to a question given a large collection of textual data is not an easy task. There is a need to perceive and recognize the question at a level that permits to detect some constraints that the question imposes on possible answers. The question classification task is used in Question Answering systems. This deduces the type of the expected answer, to perform a semantic classification to the target answer. The purpose is to provide additional information to reduce the gap between answer and question. An approach to improve the effectiveness of classifiers focusing on linguistic analysis and statistical approaches. This work also proposes two methods of questions expansion. Various questions representation, term weighting and diverse machine learning algorithms are studied. Experiments conducted on actual data are presented. Of interest is the improvement in the precision on the classification of questions. MOTS-CLES : Classification, Selections des descripteurs, Expansion semantique, Apprentissage, Fouille de texte.
监督问题分类:语义扩展的作用
在给定大量文本数据的情况下,正确回答问题并不是一件容易的事。有必要在某种程度上理解和认识问题,以便发现问题对可能的答案施加的一些限制。问题分类任务用于问答系统。这将推断预期答案的类型,从而对目标答案执行语义分类。目的是提供额外的信息,以减少答案和问题之间的差距。以语言分析和统计方法为重点,探讨如何提高分类器的有效性。本工作还提出了两种问题展开的方法。研究了各种问题表示、术语加权和各种机器学习算法。给出了在实际数据上进行的实验。令人感兴趣的是问题分类精度的提高。MOTS-CLES:分类,描述符选择,扩展仿古,学徒,文本Fouille。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信