Gold Single-Axis Differential Capacitive MEMS Accelerometer With Proof-Mass Position Control Electrode Fabricated by Post-CMOS Technology

Akira Onishi, Kisuke Miyado, Devi Srujana Tenneti, K. Machida, Parthojit Chakraborty, M. Sone, Yoshihiro Miyake, Hiroyuki Ito
{"title":"Gold Single-Axis Differential Capacitive MEMS Accelerometer With Proof-Mass Position Control Electrode Fabricated by Post-CMOS Technology","authors":"Akira Onishi, Kisuke Miyado, Devi Srujana Tenneti, K. Machida, Parthojit Chakraborty, M. Sone, Yoshihiro Miyake, Hiroyuki Ito","doi":"10.1109/INERTIAL56358.2023.10103943","DOIUrl":null,"url":null,"abstract":"This paper presents a gold single-axis differential capacitive MEMS accelerometer with a proof-mass position control electrode. The proposed device consists of the proof-mass position control electrode separating from the detection electrode to avoid feedback cross-talk. To realize the proposed device structure, the relationship between the control voltage and displacement with the single proof-mass is investigated regarding the MEMS accelerometer design for micro-g $(1\\mathrm{g}= 9.8\\mathrm{m}/\\mathrm{s}^{2})$ level sensing. The fabricated devices indicate that the displacement of 1.01 $\\upmu \\mathrm{m}$ can be obtained by a 3.0 V control voltage. Moreover, experimental results of the device characteristics show a sensitivity and Brownian noise $B_{\\mathrm{N}}$ of 1.18 $\\text{pF}/\\mathrm{G}$ and 341 $\\text{nG}/\\surd\\text{Hz}$, respectively. Evaluation results based on the measured data provided a total noise less than 10 $\\upmu\\mathrm{G}/\\surd\\text{Hz}$, which is 3.64 $\\upmu\\mathrm{G}/\\surd\\text{Hz}$, the target value to realize micro-g level sensing. In conclusion, these results confirm that the proposed device has a potential for establishing the high-performance CMOS-MEMS accelerometer by proof-mass position control.","PeriodicalId":236326,"journal":{"name":"2023 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INERTIAL56358.2023.10103943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a gold single-axis differential capacitive MEMS accelerometer with a proof-mass position control electrode. The proposed device consists of the proof-mass position control electrode separating from the detection electrode to avoid feedback cross-talk. To realize the proposed device structure, the relationship between the control voltage and displacement with the single proof-mass is investigated regarding the MEMS accelerometer design for micro-g $(1\mathrm{g}= 9.8\mathrm{m}/\mathrm{s}^{2})$ level sensing. The fabricated devices indicate that the displacement of 1.01 $\upmu \mathrm{m}$ can be obtained by a 3.0 V control voltage. Moreover, experimental results of the device characteristics show a sensitivity and Brownian noise $B_{\mathrm{N}}$ of 1.18 $\text{pF}/\mathrm{G}$ and 341 $\text{nG}/\surd\text{Hz}$, respectively. Evaluation results based on the measured data provided a total noise less than 10 $\upmu\mathrm{G}/\surd\text{Hz}$, which is 3.64 $\upmu\mathrm{G}/\surd\text{Hz}$, the target value to realize micro-g level sensing. In conclusion, these results confirm that the proposed device has a potential for establishing the high-performance CMOS-MEMS accelerometer by proof-mass position control.
后cmos技术制造的带质量证明位置控制电极的金单轴差分电容式MEMS加速度计
提出了一种带质量验证位置控制电极的金单轴差分电容式MEMS加速度计。该装置由与检测电极分离的质量证明位置控制电极组成,以避免反馈串扰。为了实现所提出的器件结构,研究了用于微g $(1\ mathm {g}= 9.8\ mathm {m}/\ mathm {s}^{2})$电平传感的MEMS加速度计设计中,控制电压和位移与单个验证质量之间的关系。所制备的器件表明,在3.0 V的控制电压下,可以获得1.01 $\upmu \mathrm{m}$的位移。实验结果表明,该器件的灵敏度为1.18 $\text{pF}/\ mathm {G}$,布朗噪声$B_{\ mathm {N}}$,布朗噪声$B_{\ mathm {G}$,布朗噪声$B_{\ text{nG}/\surd\text{Hz}$。评价结果根据实测数据提供的总噪声小于10 $\upmu\ mathm {G}/\surd\text{Hz}$,即3.64 $\upmu\ mathm {G}/\surd\text{Hz}$,是实现微G级传感的目标值。总之,这些结果证实了所提出的器件具有建立高性能CMOS-MEMS加速度计的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信