Intelligent maximum power tracking and inverter hysteresis current control of grid-connected PV systems

H. Diab, H. El-Helw, H. Talaat
{"title":"Intelligent maximum power tracking and inverter hysteresis current control of grid-connected PV systems","authors":"H. Diab, H. El-Helw, H. Talaat","doi":"10.1109/APCET.2012.6302065","DOIUrl":null,"url":null,"abstract":"This paper proposes a maximum power point tracking scheme using neural networks for a grid connected photovoltaic system. The system is composed of a photovoltaic array, a boost converter, a three phase inverter and grid. The neural network proposed can predict the required terminal voltage of the array in order to obtain maximum power. The duty cycle is calculated and the boost converter switches are controlled. Hysteresis current technique is applied on the three phase inverter so that the output voltage of the converter remains constant at any required set point. The complete system is simulated using MATLAB/SIMULINK software under sudden weather conditions changes. Results show accurate and fast response of the converter and inverter control and which leads to fast maximum power point tracking.","PeriodicalId":184844,"journal":{"name":"2012 International Conference on Advances in Power Conversion and Energy Technologies (APCET)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Advances in Power Conversion and Energy Technologies (APCET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCET.2012.6302065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

This paper proposes a maximum power point tracking scheme using neural networks for a grid connected photovoltaic system. The system is composed of a photovoltaic array, a boost converter, a three phase inverter and grid. The neural network proposed can predict the required terminal voltage of the array in order to obtain maximum power. The duty cycle is calculated and the boost converter switches are controlled. Hysteresis current technique is applied on the three phase inverter so that the output voltage of the converter remains constant at any required set point. The complete system is simulated using MATLAB/SIMULINK software under sudden weather conditions changes. Results show accurate and fast response of the converter and inverter control and which leads to fast maximum power point tracking.
并网光伏系统最大功率智能跟踪与逆变器磁滞电流控制
提出了一种基于神经网络的并网光伏系统最大功率点跟踪方案。该系统由光伏阵列、升压变换器、三相逆变器和电网组成。提出的神经网络可以预测阵列所需的终端电压,以获得最大功率。计算占空比,控制升压变换器开关。在三相逆变器上应用磁滞电流技术,使变频器的输出电压在任意设定值上保持恒定。利用MATLAB/SIMULINK软件对整个系统在突发天气条件变化下进行了仿真。结果表明,变换器和逆变器控制响应准确、快速,从而实现了最大功率点的快速跟踪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信