Mixed-Integer Evolutionary Optimization of Artificial Neural Networks

Yung-Chin Lin, Yung-Chien Lin, Kuo-Lan Su, Wen-Cheng Chang
{"title":"Mixed-Integer Evolutionary Optimization of Artificial Neural Networks","authors":"Yung-Chin Lin, Yung-Chien Lin, Kuo-Lan Su, Wen-Cheng Chang","doi":"10.1109/ICICIC.2009.260","DOIUrl":null,"url":null,"abstract":"A novel application to the optimization of artificial neural networks (ANNs) is presented in this paper. Here, the weight and architecture optimization of ANNs can be formulated as a mixed-integer optimization problem. And then a mixed-integer evolutionary algorithm (Mixed-Integer Hybrid Differential Evolution, MIHDE) is used to optimize the ANN. Finally, the optimized ANN is applied to the prediction of chaotic time series. The satisfactory results are achieved, and demonstrate that the optimized ANN by MIHDE can effectively predict the chaotic time series.","PeriodicalId":240226,"journal":{"name":"2009 Fourth International Conference on Innovative Computing, Information and Control (ICICIC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Fourth International Conference on Innovative Computing, Information and Control (ICICIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIC.2009.260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A novel application to the optimization of artificial neural networks (ANNs) is presented in this paper. Here, the weight and architecture optimization of ANNs can be formulated as a mixed-integer optimization problem. And then a mixed-integer evolutionary algorithm (Mixed-Integer Hybrid Differential Evolution, MIHDE) is used to optimize the ANN. Finally, the optimized ANN is applied to the prediction of chaotic time series. The satisfactory results are achieved, and demonstrate that the optimized ANN by MIHDE can effectively predict the chaotic time series.
人工神经网络的混合整数进化优化
本文提出了一种新的应用于人工神经网络优化的方法。在这里,人工神经网络的权值和结构优化可以表述为一个混合整数优化问题。然后采用混合整数进化算法(mixed-integer Hybrid Differential Evolution, MIHDE)对人工神经网络进行优化。最后,将优化后的人工神经网络应用于混沌时间序列的预测。结果表明,优化后的人工神经网络能够有效地预测混沌时间序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信