Analysis of myoelectric signals using a Field Programmable SoC

B. Borbely, Zoltán Kincses, Zsolt Vörösházi, Z. Nagy, P. Szolgay
{"title":"Analysis of myoelectric signals using a Field Programmable SoC","authors":"B. Borbely, Zoltán Kincses, Zsolt Vörösházi, Z. Nagy, P. Szolgay","doi":"10.1109/ECCTD.2013.6662255","DOIUrl":null,"url":null,"abstract":"A platform design for the analysis of human myoelectric signals (MES) is presented. Offline recorded multichannel signals of forearm muscles are processed with a Field Programmable SoC in order to classify different movement patterns to control human-assisting electromechanical systems with multiple degrees of freedom (e.g. a prosthetic hand). Benchmark results of an ANSI C implementation are shown to assess the raw performance of the built-in ARM cores of the SoC. Possible computational bottlenecks are located based on the results and custom hardware implementations are shown to fully utilize the flexibility and performance of the used hardware platform.","PeriodicalId":342333,"journal":{"name":"2013 European Conference on Circuit Theory and Design (ECCTD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 European Conference on Circuit Theory and Design (ECCTD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCTD.2013.6662255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

A platform design for the analysis of human myoelectric signals (MES) is presented. Offline recorded multichannel signals of forearm muscles are processed with a Field Programmable SoC in order to classify different movement patterns to control human-assisting electromechanical systems with multiple degrees of freedom (e.g. a prosthetic hand). Benchmark results of an ANSI C implementation are shown to assess the raw performance of the built-in ARM cores of the SoC. Possible computational bottlenecks are located based on the results and custom hardware implementations are shown to fully utilize the flexibility and performance of the used hardware platform.
使用现场可编程SoC分析肌电信号
提出了一种用于人体肌电信号分析的平台设计。前臂肌肉的离线记录多通道信号通过现场可编程SoC进行处理,以便对不同的运动模式进行分类,以控制具有多个自由度的人类辅助机电系统(例如假手)。一个ANSI C实现的基准测试结果显示评估SoC的内置ARM内核的原始性能。根据结果定位了可能的计算瓶颈,并展示了自定义硬件实现,以充分利用所使用硬件平台的灵活性和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信