A CMOS Distributed Sensor System for High-Density Wireless Neural Implants for Brain-Machine Interfaces

V. Leung, Jihun Lee, Siwei Li, Siyuan Yu, Chester Kilfoyle, L. Larson, A. Nurmikko, F. Laiwalla
{"title":"A CMOS Distributed Sensor System for High-Density Wireless Neural Implants for Brain-Machine Interfaces","authors":"V. Leung, Jihun Lee, Siwei Li, Siyuan Yu, Chester Kilfoyle, L. Larson, A. Nurmikko, F. Laiwalla","doi":"10.1109/ESSCIRC.2018.8494335","DOIUrl":null,"url":null,"abstract":"Current state-of-the-art Brain-Machine Interfaces (BMIs) rely on invasive “passive” microelectrode technologies, which are prohibitively challenging to scale beyond several hundred channels due to physical constraints. Further performance enhancement in BMIs relies on the ability to develop implantable sensor technologies that would be scalable to thousands of channels without significant biological overhead. In this work., we describe prototype testing of a distributed sensor system of CMOS “Neurograins,” which provide a high density network of autonomous implantable neural sensors. These Neurograins are wirelessly powered using near-field RF at ~1 GHz and at densities up to 250 chips/cm2, A 3-coil system is used to enhance the wireless signal transfer function. Telemetry is accomplished using RF backscatter with TDMA networking at a data rate of 10 Mbps, and Bit Error Rates (BER) <0.1% (measurement limit). An asynchronous periodic, packetized multiple access network is demonstrated for initial Neurograin arrays. Benchtop measured results incorporate a physiologic model for RF attenuation - a “Brain phantom” - to accurately mimic the biomedical scenario.","PeriodicalId":355210,"journal":{"name":"ESSCIRC 2018 - IEEE 44th European Solid State Circuits Conference (ESSCIRC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSCIRC 2018 - IEEE 44th European Solid State Circuits Conference (ESSCIRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSCIRC.2018.8494335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

Current state-of-the-art Brain-Machine Interfaces (BMIs) rely on invasive “passive” microelectrode technologies, which are prohibitively challenging to scale beyond several hundred channels due to physical constraints. Further performance enhancement in BMIs relies on the ability to develop implantable sensor technologies that would be scalable to thousands of channels without significant biological overhead. In this work., we describe prototype testing of a distributed sensor system of CMOS “Neurograins,” which provide a high density network of autonomous implantable neural sensors. These Neurograins are wirelessly powered using near-field RF at ~1 GHz and at densities up to 250 chips/cm2, A 3-coil system is used to enhance the wireless signal transfer function. Telemetry is accomplished using RF backscatter with TDMA networking at a data rate of 10 Mbps, and Bit Error Rates (BER) <0.1% (measurement limit). An asynchronous periodic, packetized multiple access network is demonstrated for initial Neurograin arrays. Benchtop measured results incorporate a physiologic model for RF attenuation - a “Brain phantom” - to accurately mimic the biomedical scenario.
用于脑机接口的高密度无线神经植入的CMOS分布式传感器系统
目前最先进的脑机接口(bmi)依赖于侵入性的“被动”微电极技术,由于物理限制,这种技术很难扩展到数百个通道以上。bmi的进一步性能增强依赖于开发可扩展到数千个通道而没有显著生物开销的植入式传感器技术的能力。在这项工作中。,我们描述了CMOS“神经颗粒”分布式传感器系统的原型测试,该系统提供了自主植入式神经传感器的高密度网络。这些神经颗粒采用约1ghz的近场射频无线供电,密度高达250个芯片/平方厘米,采用3线圈系统增强无线信号传输功能。遥测使用射频反向散射与TDMA网络,数据速率为10 Mbps,误码率(BER) <0.1%(测量极限)。演示了初始Neurograin阵列的异步周期性、分组多址网络。台式测量结果包括射频衰减的生理模型-“脑幻影”-以准确模拟生物医学场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信