Using Synchronized Trajectory Data to Improve Airspace Demand Predictions

Alicia Borgman Fernandes, Dan Wesely, B. Holtzman, D. Sweet, Noureddin Ghazavi
{"title":"Using Synchronized Trajectory Data to Improve Airspace Demand Predictions","authors":"Alicia Borgman Fernandes, Dan Wesely, B. Holtzman, D. Sweet, Noureddin Ghazavi","doi":"10.1109/ICNS50378.2020.9222909","DOIUrl":null,"url":null,"abstract":"The National Airspace System (NAS) and its users employ various decision support systems to model future aircraft trajectories. These trajectories support functions like strategic conflict detection, time-based metering, fuel estimation, arrival time estimation, and strategic traffic flow management. Each system uses its own trajectory prediction algorithm, resulting in discrepancies in aircraft time and position predictions between systems.Air/Ground Trajectory Synchronization (AGTS) reconciles differences in trajectory prediction data elements across NAS systems to increase common situational awareness and enable more efficient and consistent decision making. The AGTS project developed a prototype AGTS Service, with the Traffic Flow Management System (TFMS) as the initial target recipient of synchronized trajectory data. The prototype implements business rules associated with using Time Based Flow Management (TBFM) trajectory data to improve TFMS trajectory prediction outputs.This paper describes analyses of trajectory prediction and scheduling data from TBFM and TFMS that drove selection of the TBFM data to provide to TFMS and associated development of the AGTS business rules. We compared the accuracy of data published by each system relative to actual meter fix crossing times to determine which TBFM Scheduled Times of Arrival (STAs) should be incorporated into TFMS trajectory predictions as an initial step toward trajectory synchronization. This paper summarizes these business rules.","PeriodicalId":424869,"journal":{"name":"2020 Integrated Communications Navigation and Surveillance Conference (ICNS)","volume":"1710 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Integrated Communications Navigation and Surveillance Conference (ICNS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNS50378.2020.9222909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The National Airspace System (NAS) and its users employ various decision support systems to model future aircraft trajectories. These trajectories support functions like strategic conflict detection, time-based metering, fuel estimation, arrival time estimation, and strategic traffic flow management. Each system uses its own trajectory prediction algorithm, resulting in discrepancies in aircraft time and position predictions between systems.Air/Ground Trajectory Synchronization (AGTS) reconciles differences in trajectory prediction data elements across NAS systems to increase common situational awareness and enable more efficient and consistent decision making. The AGTS project developed a prototype AGTS Service, with the Traffic Flow Management System (TFMS) as the initial target recipient of synchronized trajectory data. The prototype implements business rules associated with using Time Based Flow Management (TBFM) trajectory data to improve TFMS trajectory prediction outputs.This paper describes analyses of trajectory prediction and scheduling data from TBFM and TFMS that drove selection of the TBFM data to provide to TFMS and associated development of the AGTS business rules. We compared the accuracy of data published by each system relative to actual meter fix crossing times to determine which TBFM Scheduled Times of Arrival (STAs) should be incorporated into TFMS trajectory predictions as an initial step toward trajectory synchronization. This paper summarizes these business rules.
利用同步轨迹数据改进空域需求预测
国家空域系统(NAS)及其用户使用各种决策支持系统来模拟未来的飞机轨迹。这些轨迹支持战略冲突检测、基于时间的计量、燃料估计、到达时间估计和战略交通流量管理等功能。每个系统都使用自己的轨迹预测算法,导致系统之间的飞机时间和位置预测存在差异。空中/地面轨迹同步(AGTS)协调了NAS系统中轨迹预测数据元素的差异,以提高共同的态势感知能力,并实现更有效和一致的决策制定。AGTS项目开发了一个原型AGTS服务,以交通流量管理系统(TFMS)作为同步轨迹数据的初始目标接收方。原型实现了与使用基于时间的流管理(TBFM)轨迹数据相关联的业务规则,以改进TFMS轨迹预测输出。本文描述了对来自TBFM和TFMS的轨迹预测和调度数据的分析,这些数据驱动了提供给TFMS的TBFM数据的选择以及与之相关的AGTS业务规则的开发。我们比较了每个系统发布的数据相对于实际仪表固定穿越时间的准确性,以确定哪些TBFM计划到达时间(STAs)应纳入TFMS轨迹预测,作为实现轨迹同步的第一步。本文总结了这些业务规则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信