Memory design for high temperature radiation environments

Tai-hua Chen, Lawrence T. Clark, K. Holbert
{"title":"Memory design for high temperature radiation environments","authors":"Tai-hua Chen, Lawrence T. Clark, K. Holbert","doi":"10.1109/RELPHY.2008.4558870","DOIUrl":null,"url":null,"abstract":"This paper presents bulk CMOS memory circuits capable of both ultra-low voltage (subthreshold, i.e., VDD less than the transistor threshold voltage Vth) low power operation and high temperature operation at nominal VDD. One of the memory designs is radiation hardened by design (RHBD) using interleaved DICE storage cells, enclosed transistor geometries, and P-type guard rings. The other is not hardened against radiation. Experimental results are presented showing that the room temperature minimum VDD of the hardened device remains essentially unchanged from the pre-irradiation VDDMIN = 210 mV value after Co-60 irradiation to 4 Mrad(Si). The standby power supply current ISB of the device increases less than 2x from this level of irradiation. The RHBD memory design has been tested to be operational at temperatures of 225degC. The combined effects of high temperature and irradiation are also investigated for both designs.","PeriodicalId":187696,"journal":{"name":"2008 IEEE International Reliability Physics Symposium","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Reliability Physics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RELPHY.2008.4558870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper presents bulk CMOS memory circuits capable of both ultra-low voltage (subthreshold, i.e., VDD less than the transistor threshold voltage Vth) low power operation and high temperature operation at nominal VDD. One of the memory designs is radiation hardened by design (RHBD) using interleaved DICE storage cells, enclosed transistor geometries, and P-type guard rings. The other is not hardened against radiation. Experimental results are presented showing that the room temperature minimum VDD of the hardened device remains essentially unchanged from the pre-irradiation VDDMIN = 210 mV value after Co-60 irradiation to 4 Mrad(Si). The standby power supply current ISB of the device increases less than 2x from this level of irradiation. The RHBD memory design has been tested to be operational at temperatures of 225degC. The combined effects of high temperature and irradiation are also investigated for both designs.
用于高温辐射环境的存储器设计
本文提出了能够超低电压(亚阈值,即VDD小于晶体管阈值电压Vth)、低功耗工作和在标称VDD下高温工作的大块CMOS存储电路。其中一种存储设计是采用交叉DICE存储单元、封闭晶体管几何形状和p型保护环的辐射强化设计(RHBD)。另一种则不能抵抗辐射。实验结果表明,硬化后器件的室温最小VDD从Co-60辐照前的VDDMIN = 210 mV到4 Mrad(Si)基本保持不变。器件的待机电源电流ISB在此辐照水平下增加不超过2x。RHBD存储器设计已经过测试,可在225摄氏度的温度下运行。研究了高温和辐照对两种设计的综合影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信