Joshua A. Haustein, S. Cruciani, Rizwan Asif, Kaiyu Hang, D. Kragic
{"title":"Placing Objects with prior In-Hand Manipulation using Dexterous Manipulation Graphs","authors":"Joshua A. Haustein, S. Cruciani, Rizwan Asif, Kaiyu Hang, D. Kragic","doi":"10.1109/Humanoids43949.2019.9035033","DOIUrl":null,"url":null,"abstract":"We address the problem of planning the placement of a grasped object with a robot manipulator. More specifically, the robot is tasked to place the grasped object such that a placement preference function is maximized. For this, we present an approach that uses in-hand manipulation to adjust the robot's initial grasp to extend the set of reachable placements. Given an initial grasp, the algorithm computes a set of grasps that can be reached by pushing and rotating the object in-hand. With this set of reachable grasps, it then searches for a stable placement that maximizes the preference function. If successful it returns a sequence of in-hand pushes to adjust the initial grasp to a more advantageous grasp together with a transport motion that carries the object to the placement. We evaluate our algorithm's performance on various placing scenarios, and observe its effectiveness also in challenging scenes containing many obstacles. Our experiments demonstrate that re-grasping with in-hand manipulation increases the quality of placements the robot can reach. In particular, it enables the algorithm to find solutions in situations where safe placing with the initial grasp wouldn't be possible.","PeriodicalId":404758,"journal":{"name":"2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Humanoids43949.2019.9035033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
We address the problem of planning the placement of a grasped object with a robot manipulator. More specifically, the robot is tasked to place the grasped object such that a placement preference function is maximized. For this, we present an approach that uses in-hand manipulation to adjust the robot's initial grasp to extend the set of reachable placements. Given an initial grasp, the algorithm computes a set of grasps that can be reached by pushing and rotating the object in-hand. With this set of reachable grasps, it then searches for a stable placement that maximizes the preference function. If successful it returns a sequence of in-hand pushes to adjust the initial grasp to a more advantageous grasp together with a transport motion that carries the object to the placement. We evaluate our algorithm's performance on various placing scenarios, and observe its effectiveness also in challenging scenes containing many obstacles. Our experiments demonstrate that re-grasping with in-hand manipulation increases the quality of placements the robot can reach. In particular, it enables the algorithm to find solutions in situations where safe placing with the initial grasp wouldn't be possible.